The Oracle supplied package UTL_FILE can be used to read and write files that are located on the server. It cannot be used to access files locally, that is on the computer where the client is running.

get_line

Reads a line from the opened file.

The maximum line length that can be read is 32K in 9i.

put_line

Writes a line into the opened file.

If a line was already written, it starts the line with CR/LF. This implies that the file, when being written into, does not end with CR/LF.

The maximum line length that can be written is 32K in 9i.

fopen

Opens a file. Takes four parameters: location, filename, open_mode and max_linesize

location: must be either an (existing) directory on the server AND be in the utl_file_dir paramter, or
a directory.

open_mode: 'W' for writing access or 'R' for reading access.

The init parameter utl_file_dir and directory

Up to 8i, Oracle refused to access a file that is not pointed to in the utl_file_dir parameter in the init<sid>.ora file.

In Oracle 9i, in order to access a file, either the utl_file_dir parameter must be set, or one has to create a directory.

The disadvantage of the init param is that if it is used, it is valid for all users in the database. There is no way (other than totally disable utl_file for someone) to selectively restrict directories to someone. Using directories, it is possible to grant directories to some users according to their needs. Thus, the security risk is smaller.

An example

The following two procedures show how to use utl_file to write to and read from a file using PL/SQL. It doesn't do very much let alone something useful, but it can be extended.

In order to use it, make sure the utl_file_dir paramter is set:

select value from v$parameter where name = 'utl_file_dir';

The value returned is actually the path that you must use in the arguments to utl_file_test_read and utl_file_test_write.

utl_file_test_write writes two lines into the file specified with the parameters path and filename.

create or replace procedure utl_file_test_write (

 path in varchar2,

 filename in varchar2,

 firstline in varchar2,

 secondline in varchar2)

is

 output_file utl_file.file_type;

begin

 output_file := utl_file.fopen (path,filename, 'W');

 utl_file.put_line (output_file, firstline);

 utl_file.put_line (output_file, secondline);

 utl_file.fclose(output_file);

 --exception
 -- when others then null;

end;

/

utl_file_test_read reads two lines from the file specified with the parameters path and filename and prints them using dbms_output.

create or replace procedure utl_file_test_read (

 path in varchar2,

 filename in varchar2)

is

 input_file utl_file.file_type;

 input_buffer varchar2(4000);

begin

 input_file := utl_file.fopen (path,filename, 'R');

 utl_file.get_line (input_file, input_buffer);

 dbms_output.put_line(input_buffer);

 utl_file.get_line (input_file, input_buffer);

 dbms_output.put_line(input_buffer);

 utl_file.fclose(input_file);

 --exception
 -- when others then null;

end;

/

Creating and writing to a file:

begin

 utl_file_test_write (

 '/tmp',

 'utl_file_test',

 'first line',

 'second line'

);

end;

/

Now, reading from the file:

set serveroutput on size 1000000

begin

 utl_file_test_read('/tmp','utl_file_test');

end;

/

Also check in your utl_file_dir that the file was created.

UTL_FILE Enhancements

Oracle9i Release 2 includes some long overdue enhancements to the UTL_FILE package including basic file handling and support for NCHAR and RAW data.

The basic file handling is summarised below:

SET SERVEROUTPUT ON

DECLARE

 v_exists BOOLEAN;

 v_file_length NUMBER;

 v_block_size NUMBER;

BEGIN

 UTL_FILE.FRENAME (src_location => 'c:\',

 src_filename => 'test.txt',

 dest_location => 'c:\',

 dest_filename => 'test1.txt',

 overwrite => TRUE);

 UTL_FILE.FCOPY(src_location => 'c:\',

 src_filename => 'test1.txt',

 dest_location => 'c:\',

 dest_filename => 'test2.txt');

 UTL_FILE.FREMOVE(location => 'c:\',

 filename => 'test2.txt');

 UTL_FILE.FGETATTR(LOCATION => 'c:\',

 FILENAME => 'test1.txt',

 FEXISTS => v_exists,

 FILE_LENGTH => v_file_length,

 BLOCK_SIZE => v_block_size);

 IF v_exists THEN

 DBMS_OUTPUT.PUT_LINE('Exists: TRUE');

 ELSE

 DBMS_OUTPUT.PUT_LINE('Exists: FALSE');

 END IF;

 DBMS_OUTPUT.PUT_LINE('File Length:' || v_file_length);

 DBMS_OUTPUT.PUT_LINE('Block Size :' || v_block_size);

END;

/

Support for NCHAR and RAW data has been included with the following procedures:

· FOPEN_NCHAR

· GET_LINE_NCHAR

· PUT_LINE_NCHAR

· PUT_NCHAR

· PUTF_NCHAR

· GET_RAW

· PUT_RAW

All the GET_% procedures now include a LEN parameter which specifies the number of characters to read. To support this functionality the FGETPOS function allows you to read the current pointer position, while the FSEEK procedure allow you to set it.

