
Scott Systems (EPSO)
Reports Technical Standards

Author: M.V.R.Murthy

Creation Date: July 23, 1999

Last Updated: XXX 0, 0000

Control Number: 1

Version: 1

Approvals:

Rajesh Gupta

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Document Control ii
Company Confidential - For internal use only

Document Control

Change Record

Date Author Version Change Reference

23-Jul-99 M.V.R.Murthy 1 No previous document

Reviewers

Name Position

Distribution

Copy No. Name Location

1 Library Master Project Library
1 Project Manager
1
1

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Document Control iii
Company Confidential - For internal use only

Contents

Document Control ...ii

Introduction... 1

Purpose.. 1
Background.. 1
Scope & Application... 1
Related Documents .. 1
Notational Conventions.. 2

Report Coding Standards... 3

Naming Conventions.. 3
Style and Structure .. 3
Layout Editor/Frames .. 5
Applications User Exits .. 5
Using Flexfield APIs... 8
Debugging techniques ... 15
Variable naming and usage ... 15
Performance improvement techniques.. 15
Exception handling... 17
Error messages.. 17
Porting considerations ... 17

Source Code Control.. 18

Using VSS.. 18

Open and Closed Issues .. 20

Open Issues... 20
Closed Issues .. 20

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Introduction 1
Company Confidential - For internal use only

Introduction

Purpose

This document describes the technical standards that Scott Systems Pvt. Ltd.,(EPSO)
will follow when customizing Oracle Applications Reports and development of new
reports for extensions of Oracle Applications using the tool Reports 2.5.

 While the document Dev-std.doc (Technical Standards , Scott-EPSO) describes the
cosmetic standards applied to Reports , this document describes the Technical standards
to be used in development of reports using Reports 2.5 tool , and hence should be read
in conjunction with the Dev-std.doc (Technical Standards , Scott-EPSO). This document
makes no attempt to clarify the concepts of Reports 2.5 tool and as such assumes that
the reader is familiar with Reports 2.5 and other Oracle development tools.

This document is targeted at the Scott-EPSO technical consultants involved in building
new and customized Oracle Applications reports.

Background

The information in this document has been defined ,

1.As the result of discussions between Scott-EPSO technical consultants.

2.On the basis of study of various Oracle Applications Reports by Scott-EPSO technical
consultants.

Scope & Application

The standards in this document cover the Build phase and will primarily affect tasks in the
Module Design and Build process of AIM. The document applies to all Oracle
Applications Reports development and customizations undertaken by Scott-EPSO.

Related Documents

1. Technical Standards for Scott-EPSO (Dev_Stds.doc)
2. Oracle Applications Developer’s Guide – Release 11
3. Oracle Applications Flexfield’s Guide – Release 11 .
4. Reports 2.5 Reference Manual
5. Microsoft Visual SourceSafe V 5.0 Reference Manual

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Introduction 2
Company Confidential - For internal use only

Notational Conventions

You should be familiar with the notational conventions listed in the following table.

Convention Explanation
--
File--New--Report Indicates a selection of submenu item Report from

the New submenu of the File menu.
Data/Selection:Repeat Indicates a selection of Repeat from the

Data/Selection tab of a property sheet.
Font Change Indicates text to be entered exactly as shown.
UPPERCASE Indicates command, column, parameter, field,

boilerplate, and anchor names.
Initial Caps Indicates table, menu, query, group, frame, and

repeating frame names, as well as property sheet
names.

Bold Indicates items within a menu, buttons, or tabs on a
property sheet.

Italics Indicates options for Oracle Reports settings

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Report Coding Standards 3
Company Confidential - For internal use only

Report Coding Standards

Naming Conventions

The naming conventions for various Reports 2.5 Objects should be as specified in the
following table,

Object Type Name Format Explanation Comments

Lexical Parameter LP_D D=Description

Bind Parameter P_D D=Description

Query Q_D D=Description Description should
reflect the query
selection.
Example :
Q_Payments

Group G_D D=Description Description should
be the column
Name on which
the Group is
based

Formula Column CF_D D=Description Follow same
guidelines as
function naming.

Summary Column CS_D_XXX D=Source of the
Column
XXX=Function of
Calculation

Example :
CS_sal_sum

Placeholder Column CP_D D=Description

Rectangle RC_D D=Description Description should
reflect the location
of the object.
Example :
RC_Orders_Line_
header

Frame M_D D=Description Description should
describe the
objects it is
enclosing.

Boilerplate Text B_D D=Description

Style and Structure

The cosmetic standards applicable would be as elaborated in Dev_Stds.doc.
To ensure a standard layout and ease in design always enable View--Grid, and
View--Grid Snap in the layout editor.
Ensure a top and bottom margin of 0.5’’. In the case of documents like Purchase Order or
Invoice that could require filing , provide a left margin of 0.5”.
Always turn Confine mode to ON unless an object has to be explicitly moved out of the
enclosing object. Also , always turn the Flex Mode to OFF unless some objects have to

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Report Coding Standards 4
Company Confidential - For internal use only

be explicitly pushed in the push path of an object while the object is being re-sized or
moved.

Suggestion: When using Tool bar in Layout Editor position the cursor on
the Tool icon and double click , this enables the tool for multiple operations as
against a single click which enables the Tool for a single operation only.

The following specific settings should be followed in case of Character and Bitmap
reports ,

Character Mode Reports :
i. Set Tools--Tools Options : Runtime Parameters:Mode as Character
ii. Report Module--Properties : Set the following properties in the Character
Mode tab

Report Width x Height 80 x 66
Use Character units in Designer : Checked

iii. In Layout Editor View--View Options--Rulers
 Set the Units Character cells

 Grid Spacing 1
 Number of snap points per Grid Spacing 1

 Let the Character Cell Size (points) be Horizontal 6.5 , Vertical 12.
iv. Set the Format--Font to Courier – Regular 9

Bitmap Reports :

i. Set Tools--Tools Options : Runtime Parameters:Mode as Bitmap
ii. Report Module--Properties : Set the following properties in the Character
Mode tab

Use Character units in Designer : unchecked
Report Width x Height 8.5 x 11

In case it is a customization of a character mode report to bitmap report convert the
report width and height using the formula ,
Width = Old width in Character units * 8.5 / 80
Height = Old height in Character units * 11 / 66

iii. In Layout Editor View--View Options--Rulers
 Set the Units Inches

 Grid Spacing 1
 Number of snap points per Grid Spacing can be depend on the

granularity of control required, 4 snap points would ensure good granular control.
 Let the Character Cell Size (points) be Horizontal 6.5 , Vertical 12.
iv. Set the Format--Font to Arial – Regular 8.
v. Additionally the following settings are required at the Concurrent Program Definition,

a. Set Options field to Version=2.0b
b. Output format shall be HTML/PDF/Postscript.
c. Use a separate Print Style for bitmap reports (Portrait Bit Map/Landscape Bit

Map)

Warning: Exercise Caution using Menu Item Arrange--Group , because
grouping moves all the objects grouped to the same layer.In the case of
repeating frames this can lead to a frequency error. For example, suppose a
repeating frame contains a boilerplate object and a field. The boilerplate object
is a layer above the field.If you group the repeating frame and the boilerplate
object , the repeating frame is moved to the same layer as the boilerplate
object. When you run the report , you receive a frequency error because the
repeating frame is a layer above its enclosed field. (Repeating frames must be
a layer below the objects they contain).

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Report Coding Standards 5
Company Confidential - For internal use only

Layout Editor/Frames

Most of the customizations of Character Mode reports to Bitmap reports require painting
of rectangular or square objects to group/format objects. In these cases , the following
points should be considered,

• Do not substitute frames with rectangles.
Use a frame to enclose objects, rectangle is a boilerplate object and does not
enclose the objects. Also rectangles are fixed in length and width. Whenever we
need to draw a rectangular/square object around the objects that repeat use frame
and give a line color and line weight of 1pt.
Use rectangle to enclose boilerplate objects that are fixed e.g., Column header.

• Paint the object at the correct place.
To paint a frame or any object in a layout editor that already has objects , the
following steps could be of help,
i. Understand the existing layout structure and zoom in to correct location

where you would like to place the new object.
ii. After making sufficient room to paint the object , paint the object so that the

appropriate enclosing object physically encloses it.
iii. An object that appears to have been enclosed by an enclosing object in a

layout editor may not be actually enclosed. This is because , an object is
considered to be enclosed by another object only if all of the following are
true ;
a) both objects belong to same region (Body,Margin,Header or Trailer);
b) the outermost of the two objects is a frame or repeating frame;
c) the outermost of the two objects is behind the other object;
d) the innermost of the two objects lies entirely within the borders of the

other object.
An object painted in the layout editor which appears to have been enclosed
or enclose objects might satisfy a),b) and d) of above but not c). In order that
a newly painted object should enclose other existing objects , the object
painted needs to be moved backward till it is behind the enclosed objects.
Optionally , all other enclosed objects can be moved forward.

• Use flex mode judiciously.
Often , it might be required to paint a frame in an existing layout editor to enclose
only certain objects and to make room for additional objects. In this case the new
frame painted needs to be larger than the enclosed objects and the other objects that
are not enclosed by the newly painted frame need to be pushed in their path.
In a scenario like the one described above, first decide on the exact additional space
needed to be covered by the new frame apart from enclosing the existing objects,
Second turn the flex mode ON and paint the new frame to the exact size. The
decision as to the size of the frame should be correct before painting the frame,
because once the non-enclosed objects are pushed in their path using flex mode,
cannot be pulled back at a later stage.

Applications User Exits

The user exits available in Oracle Reports are:

• FND SRWINIT
• FND SRWEXIT
• FND FORMAT_CURRENCY
• FND FLEXIDVAL
• FND FLEXSQL

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Report Coding Standards 6
Company Confidential - For internal use only

FND SRWINIT / FND SRWEXIT

FND SRWINIT sets your profile option values and allows Oracle Application Object
Library user exits to detect that they have been called by an Oracle Reports program.
FND SRWINIT also allows your report to use the correct organization automatically. FND
SRWEXIT ensures that all the memory allocated for Oracle Application Object Library
user exits has been freed up properly.

FND FORMAT_CURRENCY

This user exit formats the currency amount dynamically depending upon the precision of
the actual currency value, the standard precision, whether the value is in a mixed
currency region, the user’s positive and negative format profile options, and the location
(country) of the site. The location of the site determines the thousands separator and
radix to use when displaying currency values. An additional profile determines whether
the thousands separator is displayed. Use the Currencies window to set the standard,
extended, and minimum precision of a currency.

You obtain the currency value from the database into an Oracle Reports column. Define
another Oracle Reports column, a formula column of type CHAR, which executes the
FORMAT_CURRENCY user exit to format the currency value. A displayed field has this
formula column as its source so that the formatted value is automatically copied into
the field for display.

Syntax

FND FORMAT_CURRENCY
CODE=”:column containing currency code”
DISPLAY_WIDTH=”field width for display”
AMOUNT=”:source column name”
DISPLAY=”:display column name”
[MINIMUM_PRECISION=”:P_MIN_PRECISION”]
[PRECISION=”{STANDARD|EXTENDED}”]
[DISPLAY_SCALING_FACTOR=””:P_SCALING_FACTOR”]

Procedure

Step 1. Define Your Parameters

First define all the parameters (using the Oracle Reports Parameter Screen). Use these
parameters in the user exit calls and SQL statements.
Name: P_CONC_REQUEST_ID
Data Data Type: NUMBER
Width: 15
Initial Value: 0
You always create this lexical parameter. ”FND SRWINIT” uses this parameter to retrieve
information about this concurrent request.
Name: P_MIN_PRECISION
Data Type: NUMBER
Width: 2
Initial Value:
You reference this lexical parameter in your FND FORMAT_CURRENCY user exit call.

Step 2. Call FND SRWINIT

You always call FND SRWINIT from the Before Report Trigger as follows:
SRW.USER_EXIT(’FND SRWINIT’);
This user exit sets up information for use by profile options and other AOL features.
You always call FND SRWEXIT from the After Report Trigger as follows:
SRW.USER_EXIT(’FND SRWEXIT’);
This user exit frees all the memory allocation done in other AOL exits.

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Report Coding Standards 7
Company Confidential - For internal use only

Step 3. Create the Currency Code Query

Create a query which selects the currency code and the currency amount from your
table. In this case you might use:
SELECT OFFICE,
SUM(AMOUNT) C_INCOME,
CURRENCY_CODE C_CURRENCY
FROM OFFICE_INCOME
WHERE TRANSACTION_DATE = ’01/92’
ORDER BY BY OFFICE

Step 4. Create a column for the currency call

Create one column (C_NET_INCOME) which contains the user exit (FND
FORMAT_CURRENCY) call. This is a formula column which formats the number and
displays it. The user exit call looks like the
following:
SRW.REFERENCE(:C_CURRENCY);
SRW.REFERENCE(:C_INCOME);
SRW.USER_EXIT(’FND FORMAT_CURRENCY
CODE=”:C_CURRENCY”
DISPLAY_WIDTH=”15”
AMOUNT=”:C_INCOME”
DISPLAY=”:C_NET_INCOME”
MINIMUM_PRECISION=”:P_MIN_PRECISION”’);
RETURN(:C_NET_INCOME);

Suggestion: Always reference any source column/parameter which is used as
a source for data retrieval in the user exit. This guarantees that this
column/parameter will contain the latest value and is achieved by
”SRW.REFERENCE” call as shown above.

Here the column name containing currency code is ”C_CURRENCY” and the field width
of the formatted amount field is 15. The source column is ”C_INCOME” and the resulting
formatted output is placed in ”C_NET_INCOME”. The minimum precision of all the
currencies used for this report is retrieved from the lexical P_MIN_PRECISION (which in
this case is set to 3). At the end of the user exit call remember to reference the column
”C_NET_INCOME” by RETURN(:C_NET_INCOME), otherwise the column may not
contain the current information. You do not include the MINIMUM_PRECISION token for
single currency reports.

Step 5. Hide the Amount

In Default layout, deselect the amount column (C_INCOME) so that it is not displayed in
the report. Do not display this amount because it contains the unformatted database
column value. In the layout painter update the boiler plate text for each displayed
currency field (which in this case are C_CURRENCY and C_NET_INCOME)

☞ Attention: Repeat steps 4 and 5 for each displayed currency field.

Step 6. Create the title

In the layout painter paint the boiler plate text title as follows moving previous fields and
boiler plate text as necessary:

Net Income for January 1992

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Report Coding Standards 8
Company Confidential - For internal use only

Step 7. Define Your Report with Application Object Library

Define your report with Standard Request Submission. Ensure you define an argument
P_MIN_PRECISION which defaults to $PROFILE$.MIXED_PRECISION.
The report is now ready to be run.

Summary

A brief summary of the report specifications:
Lexical Parameters:

• P_CONC_REQUEST_ID (required)
• P_MIN_PRECISION (needed for mixed currency reports)
• Column Names:
• C_CURRENCY
• C_NET_INCOME
• AOL User Exits:
• FND SRWINIT (required)
• FND FORMAT_CURRENCY
• FND SRWEXIT (required)

Using Flexfield APIs

Using Oracle Applications flexfields routines with Oracle Reports, you can build reports
that display flexfields data easily and in a number of ways:

• Display any individual segment value, prompt, or description.
• Display segment values, prompts, or descriptions from multiple flexfield structures (or

contexts) in the same report.
• Display segment values, prompts, or descriptions from different flexfields in the same

report.
• Display two or more flexfield segment values, prompts, or descriptions, concatenated

with delimiters, in the correct order.
• This includes description information for dependent, independent, and table validated

segments.
• Restrict output based upon a flexfield range (low and high values).
• Prevent reporting on flexfield segments and values that users do not have access to

(flexfield value security).
• Specify order by, group by, and where constraints using one or more, or all segment

columns.

General Methodology :

You use a two step method to report on flexfield values. The first step creates the
appropriate SQL statement dynamically based upon the user’s flexfield. The output of the
first step is used as input to the second step. The second step formats this raw data for
display.
Step 1 (Construction):

The first step requires you to include one or more lexical parameters (Oracle Reports
variables that can be changed at runtime) in your SQL statement. You call the user exit
FND FLEXSQL with different arguments to specify that part of the query you would like to
build.
The user exit retrieves the appropriate column names (SQL fragment) and inserts it into
the lexical parameter at runtime before the SQL query is executed. The query then
returns site– and runtime–specific flexfield information. For example, suppose you have
the following query:

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Report Coding Standards 9
Company Confidential - For internal use only

SELECT &LEXICAL1 alias, column
FROM table
WHERE &LEXICAL2
The preliminary calls to FND FLEXSQL replace values of LEXICAL1 and LEXICAL2 at
execution time with the SQL fragments. For example, LEXICAL1 becomes
”SEGMENT1||’\n’||SEGMENT2” and LEXICAL2 becomes ”SEGMENT1 < 2” (assuming
the user’s flexfield is made up of two segments and the user requested that the segment
value of SEGMENT1 be less than 2). The actual executed SQL query might be:
SELECT SEGMENT1||’\n’||SEGMENT2 alias, column
FROM table
WHERE SEGMENT1 < 2
The SQL statement for a user with a different flexfield structure might be:
SELECT SEGMENT5||’\n’||SEGMENT3||’\n’||SEGMENT8 alias, column
FROM table
WHERE SEGMENT3 < 2
With this step you can alter the SELECT, ORDER BY, GROUP BY, or WHERE clause.
You use this step to retrieve all the concatenated flexfield segment values to use as input
to the user exit FND FLEXIDVAL in step 2 (described below). You call this user exit once
for each lexical parameter you use, and you always call it at least once to get all
segments. This raw flexfield information is in an internal format and should never be
displayed (especially if the segment uses a ”hidden ID” value set).

Step 2 (Display):

The second step requires you to call another user exit, FND FLEXIDVAL, on a ”post–
record” basis. You create a new formula column to contain the flexfield information and
include the user exit call in this column. This user exit determines the exact information
required for display and populates the column appropriately. By using the flexfield
routines the user exit can access any flexfield information. Use this step for getting
descriptions, prompts, or values. This step derives the flexfield information from the
already selected concatenated values and populates the formula column on a row by row
basis. You call FND FLEXIDVAL once for each record of flexfield segments. The flexfield
user exits for Oracle Reports are similar to their Oracle Application Object Library (using
SQL*Forms) counterparts LOADID(R) or LOADDESC and POPID(R) or POPDESC; one
to construct or load the values (FLEXSQL), the other to display them (FLEXIDVAL). The
token names and meanings are similar.

Basic Implementation Steps

Step 1 Call FND SRWINIT from your Before Report Trigger
You call the user exit FND SRWINIT from your Before Report Trigger. FND SRWINIT
fetches concurrent request information and sets up profile options. You must include this
step if you use any Oracle Application Object Library features in your report (such as
concurrent processing).

Step 2 Call FND SRWEXIT from your After Report Trigger

You call the user exit FND SRWEXIT from your After Report Trigger. FND SRWEXIT
frees all the memory allocation done in other Oracle Applications user exits. You must
include this step if you use any Oracle Application Object Library features in your report
(such as concurrent processing).

Step 3 Call FND FLEXSQL from the Before Report Trigger

You need to pass the concatenated segment values from the underlying code
combinations table to the user exit so that it can display appropriate data and derive any
descriptions and values from switched value sets as needed. You get this information by
calling the AOL user exit FND FLEXSQL from the Before Report Trigger. This user exit
populates the lexical parameter that you specify with the appropriate column names/SQL

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Report Coding Standards 10
Company Confidential - For internal use only

fragment at run time. You include this lexical parameter in the SELECT clause of your
report query. This enables the report itself to retrieve the concatenated flexfield segment
values. You call this user exit once for each lexical to be set. You do not display this
column in your report. You use this ”hidden field” as input to the FND FLEXIDVAL user
exit call. This user exit can also handle multi–structure flexfield reporting by generating a
decode on the structure column. If your report query uses table joins, this user exit can
prepend your code combination table name alias to the column names it returns.
SELECT &LEXICAL alias, column
becomes, for example,
SELECT SEGMENT1||’\n’||SEGMENT2 alias, column
Note: Oracle Reports needs the column alias to keep the name of column fixed for the
lexicals in SELECT clauses. Without the alias, Oracle Reports assigns the name of the
column as the initial value of the lexical and a discrepancy occurs when the value of the
lexical changes at run time.

Step 4 Restrict report data based upon flexfield values

You call the user exit FND FLEXSQL with MODE=”WHERE” from the Before Report
Trigger. This user exit populates a lexical parameter that you specify with the appropriate
SQL fragment at run time. You include this lexical parameter in the WHERE clause of
your report query. You call this user exit once for each lexical to be changed. If your
report query uses table joins, you can have this user exit prepend your code combination
table name alias to the column names it returns.
WHERE tax_flag = ’Y’ and &LEXICAL < &reportinput
becomes, for example,
WHERE tax_flag = ’Y’ and T1.segment3 < 200
The same procedure can be applied for a HAVING clause.

Step 5 Order by flexfield columns

You call the user exit FND FLEXSQL with MODE=”ORDER BY” from the Before Report
Trigger. This user exit populates the lexical parameter that you specify with the
appropriate SQL fragment at run time. You include this lexical parameter in the ORDER
BY clause of your report query. You call this user exit once for each lexical to be
changed. If your report query uses table joins, you can have this user exit prepend your
code combination table name alias to the column names it returns.
ORDER BY column1, &LEXICAL
becomes, for example,
ORDER BY column1, segment1, segment3

Step 6 Display flexfield segment values, descriptions, and prompts

Create a Formula Column (an Oracle Reports 2.5 data construct that enables you to call
a user exit). Call the user exit FND FLEXIDVAL as the Formula for this column. This user
exit automatically fetches more complicated information such as descriptions and
prompts so that you do not have to use complicated table joins to the flexfield tables.
Then you create a new field (an Oracle Reports 2.5 construct used to format and display
Columns), assign the Formula Column as its source, and add this field to your report
using the screen painter. You need to include this field on the same Repeating Frame (an
Oracle Reports 2.5 construct found in the screen painter that defines the frequency of
data retrieved) as the rest of your data, where data could be actual report data,
boilerplate, column headings, etc. The user exit is called and flexfield information
retrieved at the frequency of the Repeating Frame that contains your field. In the report
data case, the user exit is called and flexfield information retrieved once for every row
retrieved with your query. All flexfield segment values and descriptions are displayed left
justified. Segment values are not truncated, that is, the Display Size defined in Define
Key Segments screen is ignored. Segment value descriptions are truncated to the
description size (if one is displayed) or the concatenated description size (for
concatenated segments) defined in the form.

FND FLEXSQL

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Report Coding Standards 11
Company Confidential - For internal use only

Call this user exit to create a SQL fragment usable by your report to tailor your SELECT
statement that retrieves flexfield values. This fragment allows you to SELECT flexfield
values or to create a WHERE, ORDER BY, GROUP BY, or HAVING clause to limit or
sort the flexfield values returned by your SELECT statement. You call this user exit once
for each fragment you need for your select statement. You define all flexfield columns in
your report as type CHARACTER even though your table may use NUMBER or DATE or
some other datatype.
Syntax:
FND FLEXSQL
CODE=” flexfield code”
APPL_SHORT_NAME=” application short name”
OUTPUT=”: output lexical parameter name”
MODE=”{ SELECT | WHERE | HAVING | ORDER BY}”
[DISPLAY=”{ALL | flexfield qualifier | segment number}”]
[SHOWDEPSEG=”{Y | N}”]
[NUM=”: structure defining lexical” |
MULTINUM=”{Y | N}”]
[TABLEALIAS=” code combination table alias”]
[OPERATOR=”{ = | < | > | <= | >= | != | ”||”|
BETWEEN | QBE}”]
[OPERAND1=”: input parameter or value”]
[OPERAND2=”: input parameter or value”]

FND FLEXIDVAL

Call this user exit to populate fields for display. You pass the key flexfields data retrieved
by the query into this exit from the formula column. With this exit you display values,
descriptions and prompts by passing appropriate token (any one of VALUE,
DESCRIPTION, APROMPT or LPROMPT).
Syntax:
FND FLEXIDVAL
CODE=” flexfield code”
APPL_SHORT_NAME=” application short name”
DATA=”: source column name”
[NUM=”: structure defining source column/lexical”]
[DISPLAY=”{ALL| flexfield qualifier| segment number}”]
[IDISPLAY=”{ALL| flexfield qualifier| segmentnumber}”]
[SHOWDEPSEG=”{Y | N}”]
[VALUE=”: output column name”]
[DESCRIPTION=”: output column name”]
[APROMPT=”: output column name”]
[LPROMPT=”: output column name”]
[PADDED_VALUE=”: output column name”]
[SECURITY=”: column name”]

Flexfields Report–Writing Steps

These are the basic steps you use every time you write an Oracle Reports report that
accesses flexfields data. This section assumes you already have a thorough knowledge
of Oracle Reports. Though these examples contain only the Accounting Flexfield, you
can use these methods for any key flexfield.

Step 1 Define your Before Report Trigger
(this step is always the same)

You always call FND SRWINIT from the Before Report Trigger:
SRW.USER_EXIT(’FND SRWINIT’);

This user exit sets up information for use by flexfields, user profiles, the concurrent
manager, and other Oracle Applications features. You must include this step if you use

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Report Coding Standards 12
Company Confidential - For internal use only

any Oracle Application Object Library features in your report (such as concurrent
processing).

Step 2 Define your After Report Trigger
(this step is always the same)

 You always call FND SRWEXIT from the After Report Trigger:
SRW.USER_EXIT(’FND SRWEXIT’);

This user exit frees all the memory allocation done in other Oracle Applications user
exits. You must include this step if you use any Oracle Application Object Library features
in your report (such as concurrent processing).

Step 3 Define your required parameters

You define the parameters your report needs by using the Data Model Painter. You use
these parameters in the user exit calls and SQL statements.

Lexical Parameters

Name Data Type Width Initial
Value

Notes

P_CONC_REQUEST_ID Number 15 0 Always create

P_FLEXDATA Character approximately
600 (single
structure) to
6000 (roughly
ten structures)

Long
string

Cumulative width
more than
expected
width required to
hold data

You must always create the P_CONC_REQUEST_ID lexical parameter. ”FND SRWINIT”
uses this parameter to retrieve information about the concurrent request that started this
report. The P_FLEXDATA parameter holds the SELECT fragment of the SQL query. The
initial value is used to check the validity of a query containing this parameter and to
determine the width of the column as specified by the column alias. Its initial value is
some string that contains columns with a cumulative width more than the expected width
required to hold the data. Make sure the width of this column is sufficient. If there are total
30 segments in the table then the safest initial value will be:
(SEGMENT1||’\n’||SEGMENT2||’\n’||SEGMENT3 ... SEGMENT30)
You determine the width by determining the length of that string. That length is roughly
the number of characters in the table alias plus the length of the column name, times the
number of segments your code combinations table contains, times the number of
structures you expect, plus more for delimiter characters as shown in the string above.

Step 4 Define your other parameters

You define the rest of the parameters your report needs by using the Data Model Painter.
You use these parameters in the user exit calls and SQL statements.

Step 5 Call FND FLEXSQL from your Before Report Trigger to populate
P_FLEXDATA

Next, given that you want to display flexfield information like concatenated values and
descriptions, and arrange them in order, you make one call to FND FLEXSQL from the
Before Report Trigger specifying the lexical parameters. This call changes the value of
the lexical parameter P_FLEXDATA at runtime to the SQL fragment that selects all
flexfields value data. For example, the parameter changes to
(SEGMENT1||’\n’||SEGMENT2||’\n’||SEGMENT3||’\n’||SEGM ENT4).

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Report Coding Standards 13
Company Confidential - For internal use only

When you incorporate this lexical parameter into the SELECT clause of a query, it
enables the query to return the concatenated segment values that are needed as input to
other AOL user exits. These exits then retrieve the actual flexfield information for display
purposes.

Here is an example FND FLEXSQL call. Notice that the arguments are very similar to
other flexfield routine calls; CODE= and NUM= designate the key flexfield and its
structure, respectively. For a report on a different key flexfield (such as the System Items
flexfield), you would use a different CODE and NUM.

SRW.REFERENCE(:P_STRUCT_NUM);
SRW.USER_EXIT(’FND FLEXSQL
CODE=”GL#”
NUM=”:P_STRUCT_NUM”
APPL_SHORT_NAME=”SQLGL”
OUTPUT=”:P_FLEXDATA”
MODE=”SELECT”
DISPLAY=”ALL”’);

You should always reference any source column/parameter that is used as a source for
data retrieval in the user exit. This guarantees that this column/parameter will contain the
latest value and is achieved by ”SRW.REFERENCE” call as shown above.

Step 6 Call FND FLEXSQL from your Before Report Trigger to populate
other parameters

You call FND FLEXSQL once for every lexical parameter such as P_WHERE or
P_ORDERBY.

Step 7 Define your report query or queries

Define your report query Q_1:

SELECT &P_FLEXDATA C_FLEXDATA
FROM CODE_COMBINATIONS_TABLE
WHERE CODE_COMBINATIONS_TABLE.STRUCTURE_DEFINING_COLUMN

 = &P_STRUCT_NUM

The query fetches the data required to be used as input for the
FLEXIDVAL user exit later.

Note: Always provide a column alias (C_FLEXDATA in this example) in the SELECT
clause that is the name of column. This name of the column is required in FND
FLEXIDVAL.
When the report runs, the call to FND FLEXSQL fills in the lexical
parameters. As a result the second query would look something like:

SELECT (SEGMENT1||’–’||SEGMENT2||’–’||SEGMENT3||’–’||
SEGMENT4) C_FLEXDATA
FROM CODE_COMBINATIONS_TABLE
WHERE
CODE_COMBINATIONS_TABLE.STRUCTURE_DEFINING_COLUMN =
101

Step 8 Create formula columns

Now create columns C_FLEXFIELD and C_DESC_ALL (and any others your report
uses) corresponding to the values and descriptions displayed in the report. They all are in
group G_1. Be sure to adjust the column width as appropriate for the value the column
holds (such as a prompt, which might be as long as 30 characters).

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Report Coding Standards 14
Company Confidential - For internal use only

Step 9 Populate segment values formula column

To retrieve the concatenated flexfield segment values and description, you incorporate
the flexfields user exits in these columns. In the column definition of C_FLEXFIELD, you
incorporate the FND FLEXIDVAL user exit call in the formula field. You pass the
concatenated segments along with other information to the user exit, and the user exit
populates the concatenated values in this column as specified by the VALUE token.
A typical call to populate segment values in this column looks as follows:

SRW.REFERENCE(:P_STRUCT_NUM);
SRW.REFERENCE(:C_FLEXDATA);
SRW.USER_EXIT(’FND FLEXIDVAL
CODE=”GL#”
NUM=”:P_STRUCT_NUM”
APPL_SHORT_NAME=”SQLGL”
DATA=”:C_FLEXDATA”
VALUE=”:C_FLEXFIELD”
DISPLAY=”ALL”’);
RETURN(:C_FLEXFIELD);

Step 10 Populate segment descriptions

To populate the segment description use
DESCRIPTION=”C_DESC_ALL” instead of VALUE=”C_FLEXFIELD”
as in the previous call. The user exit call becomes:

SRW.REFERENCE(:P_STRUCT_NUM);
SRW.REFERENCE(:C_FLEXDATA);
SRW.USER_EXIT(’FND FLEXIDVAL
CODE=”GL#”
NUM=”:P_STRUCT_NUM”
APPL_SHORT_NAME=”SQLGL”
DATA=”:C_FLEXDATA”
DESCRIPTION=”:C_DESC_ALL”
DISPLAY=”ALL”’);
RETURN(:C_DESC_ALL);

You have created parameters and columns that are containers of all the values to be
displayed. Now, in the following steps, you create the layout to display these values on
the report.

Step 11 Create your default report layout

First choose Default Layout to generate the default layout. Deselect C_FLEXDATA.
Specify a ”Label” and a reasonable ”Width” for the columns you want to display.

Default Layout Column Settings

Column Label Width

C_FLEXFIELD Accounting Flexfield 30

C_DESC_ALL Flexfield Description 50

Oracle Reports takes you to the layout painter. Generate and run the report.

Step 12 Finish your report

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Report Coding Standards 15
Company Confidential - For internal use only

Adjust your report layout as needed.

Attention: For obtaining Oracle Applications information use PL/SQL APIs ,
wherever available , instead of user exits. Because Oracle may not support the
user exits in future releases. For example, use FND_PROFILE.GET to get the
profile values instead of user exit FND GETPROFILE.

Debugging techniques

Use PL/SQL exception section to trap error conditions in the report execution. Use
SRW.MESSAGE to trap the location of error. In case of errors like “Object not fully
enclosed “ refer to the Layout Editor/Frames section of this document for conditions of
enclosure of objects, and accordingly rectify the objects in the Layout Editor.

Variable naming and usage

Variables in PL/SQL program units shall following the naming conventions as laid out in
the Technical Design Standards document (Dev_Std.doc).

No hardcoding of any values shall be done, instead , use of declared constants shall be
made ;and if any constants are declared it should be documented specifying the purpose.

Performance improvement techniques

An Oracle Applications Report’s performance mainly depends on the SQL’s performance,
as the issue of network traffic is nonexistent.

The following guidelines shall be followed for SQL tuning.

Before approaching to optimize an SQL it is imperative to have an understanding of the
size of the tables involved. In a development environment , where the development is
taking place on demo/test database it would not be possible to have proper size of data
to test an SQL’s performance. In an Oracle Applications development scenario , a
developer can estimate a table’s relative size depending on , the client’s business
scenario , and the functionality of the table. Based on these factors , the developer
should arrive at relative sizes of tables for SQL performance tuning.

1.Use the table that returns the least number of rows as the driving table.
A driving table is one that drives the query , i.e., the rows of the driving table will be
used to evaluate other conditions.
Most of the times Oracle takes the last table in the FROM clause as driving table. In
case last table of the FROM clause is not taken as driving , then , a driving table can be
forced using hint USE_NL (table_name).

2. Use IN and EXISTS operators judiciously.
Developers should be aware that, the efficiency of EXISTS and IN is dependant
on the amount of data in each table. A query with IN in it drives from the subquery
accessing the main query for each row returned, when, a query uses EXISTS it
drives from the main query accessing the subquery for each row returned. So if the
subquery returns few rows, but, the main query returns a lot of rows for each row
from the subquery use the IN operator , the opposite would be the case for EXISTS
operator.

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Report Coding Standards 16
Company Confidential - For internal use only

3. Accidental disabling of Indexes.
If a function , whether explicit or implicit, is used on an indexed column in a WHERE
clause, the index would not be used. So a developer should keep in mind to avoid
accidental disabling of indexes. Similarly , this case would also be helpful to disable an
index intentionally. It would be advisable to disable an index when the data retrieved
from the table would be more than 20% of the total data.

4. Avoid using NOT IN operator.
Use of NOT IN operator disables index usage. This is because Oracle assumes few
records satisfy the condition and hence performs a FTS (Full Table Scan). Queries
can be reworded to avoid NOT IN operator. The following use of an outer join is a
good alternative.
For e.g., The query selects all departments with no employees,

SELECT deptno,dname
FROM dept
WHERE deptno NOT IN (SELECT emp.deptno FROM emp);

Instead use,

SELECT a.deptno,a.dname
FROM dept a,emp b
WHERE a.deptno = b.deptno (+)
AND b.rowid is null;

5. Use EXPLAIN PLAN / SQL Trace.
Always use EXPLAIN PLAN to identify the SQL execution path and accordingly tune
the statement.

The following Query may be used to retrieve the execution plan from PLAN TABLE.

COL Id FOR a3 TRU
COL Parent_id FOR a6 TRU
COL Operation FOR a35 TRU
COL Option FOR a13 TRU
COL Object FOR a10 TRU
COL Object_Type FOR a12 TRU

SELECT id,
parent_id,
LPAD(' ',2*LEVEL)||OPERATION Operation ,
OPTIONS Option,

 OBJECT_NAME Object,
OBJECT_TYPE Object_Type

FROM PLAN_TABLE
WHERE STATEMENT_ID='<statement_id>’
CONNECT BY PRIOR ID = PARENT_ID
AND STATEMENT_ID = '<statement_id>’
START WITH ID = 0
AND STATEMENT_ID = '<statement_id>’
ORDER BY ID

6. Use minimum number of queries while designing a report using Reports 2.5 tool.
This will reduce the parse time of Reports 2.5 engine. Also , use of an SQL function is
advised instead of a Reports 2.5 summary column , wherever feasible.

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Report Coding Standards 17
Company Confidential - For internal use only

Exception handling

Always handle all the exception conditions using the PL/SQL Exceptions. Meaningful
user defined exceptions should also be used to trap specific functional exceptions and
provide an action.

Use the Reports 2.5 built in exception SRW.USER_EXIT_FAILURE to check the failure
of any user exit called via SRW.USER_EXIT. The exception section should trap the user
exit name that has caused the exception to raise. This can be achieved by defining a
variable and setting its value after the calls to the user exits.

Error messages

All the user defined error messages in Reports should , along with the error message ,
specify an action. The error numbers used should be within the specific range of error
numbers assigned for each work unit.

Porting considerations

All reports developed for Oracle Applications Release 11 shall be developed using
Developer 2000 Release 1.6.1. The PL/SQL version supported by Reports 2.5 is 1.2 and
does not support certain features of PL/SQL Version 2.0 upwards. Hence any stored
program units that are called in Reports PL/SQL should not use the features not
supported by PL/SQL Version 1.2. Some of this exclusive features are PL/SQL
tables/records,Dynamic SQL.

In case of attached libraries path should be removed at the time of generation of Report
module.

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Source Code Control 18
Company Confidential - For internal use only

Source Code Control

Source code control is the process of managing revisions to program source code and
the modification of files by multiple individuals. Microsoft Visual SourceSafe v 5.0 (VSS)
should be used to control versions of Reports. In case of customization of report the first
version would always be the original report as provided by Oracle Applications.

Using VSS

Microsoft Visual SourceSafe 5.0 is a project-oriented version control system for all types
of files, including text files, graphics files, binary files, sound files, and video files. Using
Visual SourceSafe, you can track changes made to a file from the moment it was
created. And you can merge changes from two or more different versions of a file into
one file that contains them all.

Working With Files

When you want to modify a file, you check it out of the database. Visual SourceSafe
copies the file from the database into your working folder. You can then edit the file. If
anyone else attempts to check out the same file for editing, Visual SourceSafe generates
a message stating the file is already checked out. This simple checkout protocol ensures
that conflicts do not arise among multiple users working on the same file.

After you are done editing the file, you check it into Visual SourceSafe using the Check In
command. This copies the modified file from your folder into the Visual SourceSafe's
database, making your changes accessible to other users. However, Visual SourceSafe
stores all the changes that have been made to the file the most recent copy is always
available, but earlier versions can be retrieved as well. Visual SourceSafe's reverse delta
technology ensures that all versions of a file are available, but uses a minimum of disk
space.

If you want to check something in a file, but don't need to edit it, you can use the Get
Latest Version command to get the most recent version of the file into your working
folder. You can use SourceSafe's Show History command to conveniently view the file or
project's history, and the Show Differences command to determine differences between a
file in your local folder and the latest version of that file stored in the SourceSafe
database.

By far, the most commonly used Visual SourceSafe commands are those that copy files
into and out of the Visual SourceSafe database during day-to-day use.

Getting Files

When you want access to a file for viewing or compiling, but not for modification, use the
Get Latest Version command. This copies the file from the current project into your
working folder. The file Visual SourceSafe creates is read-only any modifications cannot
be saved.

To get the most recent version of a file :

• Click the file you want in Visual SourceSafe Explorer, and on the SourceSafe menu,
click Get Latest Version.

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Source Code Control 19
Company Confidential - For internal use only

To get an earlier version of a file :

1. Click the file you want in Visual SourceSafe Explorer, and on the Tools menu, click
Show History.

2. In the History of File dialog box, click the version of the file you want, and then click
Get Latest Version.

Viewing Files

You can view the master copy of a file without placing a local copy of the file in your
working folder.

To view a file

• Click the file you want in Visual SourceSafe Explorer, and on the Edit menu, click
View File.

Editing Files

You can edit a file in your working folder by double-clicking the file in the file list. In the
confirmation dialog, choose Checkout this file, and edit it in your working folder. Visual
SourceSafe ensures that the file is checked out, and opens it in the editor associated with
the file extension.

Checking Out and Checking In Files

To edit a file, you must check it out of the Visual SourceSafe database. The Check Out
command creates a writable copy of the file from the project in your working folder. A file
check out is generally exclusive, that is, no one else can check out a file that you have
checked out. Visual SourceSafe indicates who has a file checked out in the User column
of the file pane.

You can complete your check out operation in one of two ways. You can check your
updated file into Visual SourceSafe, storing your changes in the current project. Or, you
can undo your check out, which cancels your changes, both in Visual SourceSafe and in
your working folder the file returns to the way it was before you checked it out.

To check out a file

• Click the file you want in Visual SourceSafe Explorer, and on the SourceSafe menu,
click Check Out.

To check in a file, saving your changes

• Click the file you want in Visual SourceSafe Explorer, and on the SourceSafe menu,
click Check In.

To check in a file, undoing your changes

• Click the file you want in Visual SourceSafe Explorer, and on the SourceSafe menu,
click Undo Check Out.

Warning : If you choose the Undo Check Out command, you will lose any
changes you have made to the local copy of your file(s).

Reports Technical Standards
Reports Technical Standards.doc (v. 1)

 1

Open and Closed Issues 20
Company Confidential - For internal use only

Open and Closed Issues

Open Issues

Closed Issues

	Document Control
	Introduction
	Purpose
	Background
	Scope & Application
	Related Documents
	Notational Conventions

	Report Coding Standards
	Naming Conventions
	Style and Structure
	Layout Editor/Frames
	Applications User Exits
	Using Flexfield APIs
	Debugging techniques
	Variable naming and usage
	Performance improvement techniques
	Exception handling
	Error messages
	Porting considerations

	Source Code Control
	Using VSS

	Open and Closed Issues
	Open Issues
	Closed Issues

