Chintan Langalia - Page 70 of 71

DATABASE PACKAGES & THEIR USAGE

	Package Name
	Description

	Calendar
	Provides calendar maintenance functions.

	DBMS_ALERT

	Provides support for the asynchronous notification of database events.

	DBMS_APPLICATION_INFO

	Lets you register an application name with the database for auditing or performance tracking purposes.

	DBMS_AQ

	Lets you add a message (of a predefined object type) onto a queue or to dequeue a message.

	DBMS_AQADM

	Lets you perform administrative functions on a queue or queue table for messages of a predefined object type.

	DBMS_DDL

	Provides access to some SQL DDL statements from stored procedures, and provides special administration operations not available as DDLs.

	DBMS_DEBUG

	A PL/SQL API to the PL/SQL debugger layer, Probe, in the Oracle server.

	DBMS_DEFER

	Provides the user interface to a replicated transactional deferred remote procedure call facility. Requires the Distributed Option.

	DBMS_DEFER_QUERY

	Permits querying the deferred remote procedure calls (RPC) queue data that is not exposed through views. Requires the Distributed Option.

	DMBS_DEFER_SYS

	Provides the system administrator interface to a replicated transactional deferred remote procedure call facility. Requires the Distributed Option.

	DBMS_DESCRIBE

	Describes the arguments of a stored procedure with full name translation and security checking.

	DBMS_DISTRIBUTED_TRUST_ADMIN

	Maintains the Trusted Database List, which is used to determine if a privileged database link from a particular server can be accepted.

	DBMS_HS

	Lets you create and modify objects in the Heterogeneous Services dictionary.

	DBMS_HS_PASSTHROUGH

	Lets you use Heterogeneous Services to send pass-through SQL statements to non-Oracle systems.

	DBMS_IOT

	Creates a table into which references to the chained rows for an Index Organized Table can be placed using the ANALYZE command.

	DBMS_JOB

	Lets you schedule administrative procedures that you want performed at periodic intervals; it is also the interface for the job queue.

	DBMS_LOB

	Provides general purpose routines for operations on Oracle Large Object (LOBs) datatypes - BLOB, CLOB (read-write), and BFILEs (read-only).

	DBMS_LOCK

	Lets you request, convert and release locks through Oracle Lock Management services.

	DBMS_LOGMNR

	Provides functions to initialize and run the log reader.

	DBMS_LOGMNR_D

	Queries the dictionary tables of the current database, and creates a text based file containing their contents.

	DBMS_OFFLINE_OG

	Provides public APIs for offline instantiation of master groups.

	DBMS_OFFLINE_SNAPSHOT

	Provides public APIs for offline instantiation of snapshots.

	DBMS_OLAP

	Provides procedures for summaries, dimensions, and query rewrites.

	DBMS_ORACLE_TRACE_AGENT

	Provides client callable interfaces to the Oracle TRACE instrumentation within the Oracle7 Server.

	DBMS_ORACLE_TRACE_USER

	Provides public access to the Oracle release 7 Server Oracle TRACE instrumentation for the calling user.

	DBMS_OUTPUT

	Accumulates information in a buffer so that it can be retrieved out later.

	DBMS_PCLXUTIL

	Provides intra-partition parallelism for creating partition-wise local indexes.

	DBMS_PIPE

	Provides a DBMS pipe service which enables messages to be sent between sessions.

	DBMS_PROFILER

	Provides a Probe Profiler API to profile existing PL/SQL applications and identify performance bottlenecks.

	DBMS_RANDOM

	Provides a built-in random number generator.

	DBMS_RECTIFIER_DIFF

	Provides APIs used to detect and resolve data inconsistencies between two replicated sites.

	DBMS_REFRESH

	Lets you create groups of snapshots that can be refreshed together to a transactionally consistent point in time. Requires the Distributed Option.

	DBMS_REPAIR

	Provides data corruption repair procedures.

	DBMS_REPCAT

	Provides routines to administer and update the replication catalog and environment. Requires the Replication Option.

	DBMS_REPCAT_ADMIN

	Lets you create users with the privileges needed by the symmetric replication facility. Requires the Replication Option.

	DBMS_REPCAT_INSTATIATE

	Instantiates deployment templates. Requires the Replication Option.

	DBMS_REPCAT_RGT

	Controls the maintenance and definition of refresh group templates. Requires the Replication Option.

	DBMS_REPUTIL

	Provides routines to generate shadow tables, triggers, and packages for table replication.

	DBMS_RESOURCE_MANAGER

	Maintains plans, consumer groups, and plan directives; it also provides semantics so that you may group together changes to the plan schema.

	DBMS_RESOURCE_MANAGER_PRIVS

	Maintains privileges associated with resource consumer groups.

	DBMS_RLS

	Provides row level security administrative interface.

	DBMS_ROWID

	Provides procedures to create ROWIDs and to interpret their contents.

	DBMS_SESSION

	Provides access to SQL ALTER SESSION statements, and other session information, from stored procedures.

	DBMS_SHARED_POOL

	Lets you keep objects in shared memory, so that they will not be aged out with the normal LRU mechanism.

	DBMS_SNAPSHOT

(synonym DBMS_MVIEW)
	Lets you refresh snapshots that are not part of the same refresh group and purge logs. Requires the Distributed Option.

	DBMS_SPACE

	Provides segment space information not available through standard SQL.

	DBMS_SPACE_ADMIN

	Provides tablespace and segment space administration not available through the standard SQL.

	DBMS_SQL

	Lets you use dynamic SQL to access the database.

	DBMS_STANDARD

	Provides language facilities that help your application interact with Oracle.

	DBMS_STATS

	Provides a mechanism for users to view and modify optimizer statistics gathered for database objects.

	DBMS_TRACE

	Provides routines to start and stop PL/SQL tracing.

	DBMS_TRANSACTION

	Provides access to SQL transaction statements from stored procedures and monitors transaction activities.

	DBMS_TTS

	Checks if the transportable set is self-contained.

	DBMS_UTILITY

	Provides various utility routines.

	DEBUG_EXTPROC

	Lets you debug external procedures on platforms with debuggers that can attach to a running process.

	OUTLN_PKG

	Provides the interface for procedures and functions associated with management of stored outlines.

	PLITBLM

	Handles index-table operations.

	SDO_ADMIN

	Provides functions implementing spatial index creation and maintenance for spatial objects.

	SDO_GEOM

	Provides functions implementing geometric operations on spatial objects.

	SDO_MIGRATE

	Provides functions for migrating spatial data from release 7.3.3 and 7.3.4 to 8.1.x.

	SDO_TUNE

	Provides functions for selecting parameters that determine the behavior of the spatial indexing scheme used in the Spatial Cartridge.

	STANDARD

	Declares types, exceptions, and subprograms which are available automatically to every PL/SQL program.

	TimeSeries

	Provides functions that perform operations, such as extraction, retrieval, arithmetic, and aggregation, on time series data.

	TimeScale
	Provides scaleup and scaledown functions.

	TSTools
	Provides administrative tools procedures.

	UTL_COLL

	Enables PL/SQL programs to use collection locators to query and update.

	UTL_FILE

	Enables your PL/SQL programs to read and write operating system (OS) text files and provides a restricted version of standard OS stream file I/O.

	UTL_HTTP

	Enables HTTP callouts from PL/SQL and SQL to access data on the Internet or to call Oracle Web Server Cartridges.

	UTL_PG

	Provides functions for converting COBOL numeric data into Oracle numbers and Oracle numbers into COBOL numeric data.

	UTL_RAW

	Provides SQL functions for RAW datatypes that concat, substr, etc. to and from RAWS.

	UTL_REF

	Enables a PL/SQL program to access an object by providing a reference to the object.

	Vir_Pkg

	Provides analytical and conversion functions for Visual Information Retrieval.

1. What is SQL and where does it come from?

Structured Query Language (SQL) is a language that provides an interface to relational database systems. SQL was developed by IBM in the 1970s for use in System R, and is a de facto standard, as well as an ISO and ANSI standard. SQL is often pronounced SEQUEL.

In common usage SQL also encompasses DML (Data Manipulation Language), for INSERTs, UPDATEs, DELETEs and DDL (Data Definition Language), used for creating and modifying tables and other database structures.

The development of SQL is governed by standards. A major revision to the SQL standard was completed in 1992, called SQL2. SQL3 support object extensions and will be (partially?) implemented in Oracle8.

2. What are the difference between DDL, DML and DCL commands?

DDL is Data Definition Language statements. Some examples:

· CREATE - to create objects in the database

· ALTER - alters the structure of the database

· DROP - delete objects from the database

· TRUNCATE - remove all records from a table, including all spaces allocated for the records are removed

· COMMENT - add comments to the data dictionary

· GRANT - gives user's access privileges to database

· REVOKE - withdraw access privileges given with the GRANT command

DML is Data Manipulation Language statements. Some examples:

· SELECT - retrieve data from the a database

· INSERT - insert data into a table

· UPDATE - updates existing data within a table

· DELETE - deletes all records from a table, the space for the records remain

· CALL - call a PL/SQL or Java subprogram

· EXPLAIN PLAN - explain access path to data

· LOCK TABLE - control concurrency

DCL is Data Control Language statements. Some examples:

· COMMIT - save work done

· SAVEPOINT - identify a point in a transaction to which you can later roll back

· ROLLBACK - restore database to original since the last COMMIT

· SET TRANSACTION - Change transaction options like what rollback segment to use

3. How does one escape special characters when building SQL queries?

The LIKE keyword allows for string searches. The '_' wild card character is used to match exactly one character, '%' is used to match zero or more occurrences of any characters. These characters can be escaped in SQL. Example:

 SELECT name FROM emp WHERE id LIKE '%_%' ESCAPE '\';

Use two quotes for every one displayed. Example:

 SELECT 'Franks''s Oracle site' FROM DUAL;

 SELECT 'A ''quoted'' word.' FROM DUAL;

 SELECT 'A ''''double quoted'''' word.' FROM DUAL;

4. How does one eliminate duplicates rows from a table?

Choose one of the following queries to identify or remove duplicate rows from a table leaving unique records in the table:

Method 1:
 SQL> DELETE FROM table_name A WHERE ROWID > (

 2 SELECT min(rowid) FROM table_name B

 3 WHERE A.key_values = B.key_values);

Method 2:
 SQL> create table table_name2 as select distinct * from table_name1;

 SQL> drop table_name1;

 SQL> rename table_name2 to table_name1;

Method 3: (thanks to Kenneth R Vanluvanee)
 SQL> Delete from my_table where rowid not in(

 SQL> select max(rowid) from my_table

 SQL> group by my_column_name);

Method 4: (thanks to Dennis Gurnick)
 SQL> delete from my_table t1

 SQL> where exists (select 'x' from my_table t2

 SQL> where t2.key_value1 = t1.key_value1

 SQL> and t2.key_value2 = t1.key_value2

 SQL> and t2.rowid > t1.rowid);

Note: If you create an index on the joined fields in the inner loop, you, for all intents purposes, eliminate N^2 operations (no need to loop through the entire table on each pass by a record). This will speed-up th

Note 2: If you are comparing NOT-NULL columns, use the NVL function. Remember that NULL is not equal to NULL. This should not be a problem as all key columns should be NOT NULL.

5. How can I generate primary key values for my table?

Create your table with a NOT NULL column (say SEQNO). This column can now be populated with unique values:

SQL> UPDATE table_name SET seqno = ROWNUM;

or use a sequences generator:

SQL> CREATE SEQUENCE sequence_name START WITH 1 INCREMENT BY 1;
SQL> UPDATE table_name SET seqno = sequence_name.NEXTVAL;

Finally, create a unique index on this column.

6. How can I get the time difference between two date columns

Look at this example query:
select floor(((date1-date2)*24*60*60)/3600)

 || ' HOURS ' ||

 floor((((date1-date2)*24*60*60) -

 floor(((date1-date2)*24*60*60)/3600)*3600)/60)

 || ' MINUTES ' ||

 round((((date1-date2)*24*60*60) -

 floor(((date1-date2)*24*60*60)/3600)*3600 -

 (floor((((date1-date2)*24*60*60) -

 floor(((date1-date2)*24*60*60)/3600)*3600)/60)*60)))

 || ' SECS ' time_difference

from ...

7. How does one add a day/hour/minute/second to a date value?

The SYSDATE pseudo-column shows the current system date and time. Adding 1 to SYSDATE will advance the date by 1 day. Use fractions to add hours, minutes or seconds to the date. Look at these examples:

 SQL> select sysdate, sysdate+1/24, sysdate +1/1440, sysdate + 1/86400 from dual;

 SYSDATE SYSDATE+1/24 SYSDATE+1/1440 SYSDATE+1/86400

 -------------------- -------------------- -------------------- --------------------

 03-Jul-2002 08:32:12 03-Jul-2002 09:32:12 03-Jul-2002 08:33:12 03-Jul-2002 08:32:13

The following format is frequently used with Oracle Replication:

 select sysdate NOW, sysdate+30/(24*60*60) NOW_PLUS_30_SECS from dual;

 NOW NOW_PLUS_30_SECS

 -------------------- --------------------

 03-JUL-2002 16:47:23 03-JUL-2002 16:47:53

8. How does one count different data values in a column?

 select dept, sum(decode(sex,'M',1,0)) MALE,

 sum(decode(sex,'F',1,0)) FEMALE,

 count(decode(sex,'M',1,'F',1)) TOTAL

 from my_emp_table

 group by dept;

9. How does one count/sum RANGES of data values in a column?

A value x will be between values y and z if GREATEST(x, y) = LEAST(x, z). Look at this example:

 select f2,

 sum(decode(greatest(f1,59), least(f1,100), 1, 0)) "Range 60-100",

 sum(decode(greatest(f1,30), least(f1, 59), 1, 0)) "Range 30-59",

 sum(decode(greatest(f1, 0), least(f1, 29), 1, 0)) "Range 00-29"

 from my_table

 group by f2;

For equal size ranges it might be easier to calculate it with DECODE(TRUNC(value/range), 0, rate_0, 1, rate_1, ...). Eg.

 select ename "Name", sal "Salary",

 decode(trunc(f2/1000, 0), 0, 0.0,

 1, 0.1,

 2, 0.2,

 3, 0.31) "Tax rate"

 from my_table;

10. Can one retrieve only the Nth row from a table?

this solution to select the Nth row from a table:

 SELECT f1 FROM t1

 WHERE rowid = (

 SELECT rowid FROM t1

 WHERE rownum <= 10

 MINUS

 SELECT rowid FROM t1

 WHERE rownum < 10);

Alternatively...

 SELECT * FROM emp WHERE rownum=1 AND rowid NOT IN

 (SELECT rowid FROM emp WHERE rownum < 10);

Please note, there is no explicit row order in a relational database. However, this query is quite fun and may even help in the odd situation.

11. Can one retrieve only rows X to Y from a table?

To display rows 5 to 7, construct a query like this:

 SELECT *

 FROM tableX

 WHERE rowid in (

 SELECT rowid FROM tableX

 WHERE rownum <= 7

 MINUS

 SELECT rowid FROM tableX

 WHERE rownum < 5);

Please note, there is no explicit row order in a relational database. However, this query is quite fun and may even help in the odd situation.

12. How does one select EVERY Nth row from a table?

One can easily select all even, odd, or Nth rows from a table using SQL queries like this:

Method 1: Using a subquery

 SELECT *

 FROM emp

 WHERE (ROWID,0) IN (SELECT ROWID, MOD(ROWNUM,4)

 FROM emp);

Method 2: Use dynamic views (available from Oracle7.2):

 SELECT *

 FROM (SELECT rownum rn, empno, ename

 FROM emp

) temp

 WHERE MOD(temp.ROWNUM,4) = 0;

Please note, there is no explicit row order in a relational database. However, these queries are quite fun and may even help in the odd situation.

13. How does one select the TOP N rows from a table?

Form Oracle8i one can have an inner-query with an ORDER BY clause. Look at this example:

 SELECT *

 FROM (SELECT * FROM my_table ORDER BY col_name_1 DESC)

 WHERE ROWNUM < 10;

Use this workaround with prior releases:

 SELECT *

 FROM my_table a

 WHERE 10 >= (SELECT COUNT(DISTINCT maxcol)

 FROM my_table b

 WHERE b.maxcol >= a.maxcol)

 ORDER BY maxcol DESC;

14. How does one code a tree-structured query?

Tree-structured queries are definitely non-relational (enough to kill Codd and make him roll in his grave). Also, this feature is not often found in other database offerings.

The SCOTT/TIGER database schema contains a table EMP with a self-referencing relation (EMPNO and MGR columns). This table is perfect for tesing and demonstrating tree-structured queries as the MGR column contains the employee number of the "current" employee's boss.

The LEVEL pseudo-column is an indication of how deep in the tree one is. Oracle can handle queries with a depth of up to 255 levels. Look at this example:

 select LEVEL, EMPNO, ENAME, MGR

 from EMP

 connect by prior EMPNO = MGR

 start with MGR is NULL;

One can produce an indented report by using the level number to substring or lpad() a series of spaces, and concatenate that to the string. Look at this example:

 select lpad(' ', LEVEL * 2) || ENAME

One uses the "start with" clause to specify the start of the tree. More than one record can match the starting condition. One disadvantage of having a "connect by prior" clause is that you cannot perform a join to other tables. The "connect by prior" clause is rarely implemented in the other database offerings. Trying to do this programmatically is difficult as one has to do the top level query first, then, for each of the records open a cursor to look for child nodes.

One way of working around this is to use PL/SQL, open the driving cursor with the "connect by prior" statement, and the select matching records from other tables on a row-by-row basis, inserting the results into a temporary table for later retrieval.

15. How does one code a matrix report in SQL?

Look at this example query with sample output:
 SELECT *

 FROM (SELECT job,

 sum(decode(deptno,10,sal)) DEPT10,

 sum(decode(deptno,20,sal)) DEPT20,

 sum(decode(deptno,30,sal)) DEPT30,

 sum(decode(deptno,40,sal)) DEPT40

 FROM scott.emp

 GROUP BY job)

 ORDER BY 1;

 JOB DEPT10 DEPT20 DEPT30 DEPT40

 --------- ---------- ---------- ---------- ----------

 ANALYST 6000

 CLERK 1300 1900 950

 MANAGER 2450 2975 2850

 PRESIDENT 5000

 SALESMAN 5600

16. How does one implement IF-THEN-ELSE in a select statement?

The Oracle decode function acts like a procedural statement inside an SQL statement to return different values or columns based on the values of other columns in the select statement.
Some examples:

 select decode(sex, 'M', 'Male',

 'F', 'Female',

 'Unknown')

 from employees;

 select a, b, decode(abs(a-b), a-b, 'a > b',

 0, 'a = b',

 'a < b')

 from tableX;

 select decode(GREATEST(A,B), A, 'A is greater than B', 'B is greater than A')...

Note: The decode function is not ANSI SQL and is rarely implemented in other RDBMS offerings. It is one of the good things about Oracle, but use it sparingly if portability is required.

From Oracle 8i one can also use CASE statements in SQL. Look at this example:

 SELECT ename, CASE WHEN sal>1000 THEN 'Over paid' ELSE 'Under paid' END

 FROM emp;

17. How can one dump/ examine the exact content of a database column?

 SELECT DUMP(col1)

 FROM tab1

 WHERE cond1 = val1;

 DUMP(COL1)

 Typ=96 Len=4: 65,66,67,32

For this example the type is 96, indicating CHAR, and the last byte in the column is 32, which is the ASCII code for a space. This tells us that this column is blank-padded.

18. Can one drop a column from a table?

From Oracle8i one can DROP a column from a table. Look at this sample script, demonstrating the ALTER TABLE table_name DROP COLUMN column_name; command.

Other workarounds:

1. SQL> update t1 set column_to_drop = NULL;

 SQL> rename t1 to t1_base;

 SQL> create view t1 as select <specific columns> from t1_base;

2. SQL> create table t2 as select <specific columns> from t1;

 SQL> drop table t1;

 SQL> rename t2 to t1;

19. Can one rename a column in a table?

No, this is listed as Enhancement Request 163519. Some workarounds:

1. -- Use a view with correct column names...

 rename t1 to t1_base;

 create view t1 <column list with new name> as select * from t1_base;

2. -- Recreate the table with correct column names...

 create table t2 <column list with new name> as select * from t1;

 drop table t1;

 rename t2 to t1;

3. -- Add a column with a new name and drop an old column...

 alter table t1 add (newcolame datatype);

 update t1 set newcolname=oldcolname;

 alter table t1 drop column oldcolname;

20. How can I change my Oracle password?

Issue the following SQL command: ALTER USER <username> IDENTIFIED BY <new_password>
/

From Oracle8 you can just type "password" from SQL*Plus, or if you need to change another user's password, type "password user_name".

21. How does one find the next value of a sequence?

Perform an "ALTER SEQUENCE ... NOCACHE" to unload the unused cached sequence numbers from the Oracle library cache. This way, no cached numbers will be lost. If you then select from the USER_SEQUENCES dictionary view, you will see the correct high water mark value that would be returned for the next NEXTVALL call. Afterwards, perform an "ALTER SEQUENCE ... CACHE" to restore caching.

You can use the above technique to prevent sequence number loss before a SHUTDOWN ABORT, or any other operation that would cause gaps in sequence values.

22. Workaround for snapshots on tables with LONG columns

You can use the SQL*Plus COPY command instead of snapshots if you need to copy LONG and LONG RAW variables from one location to another. Eg:

COPY TO SCOTT/TIGER@REMOTE -

CREATE IMAGE_TABLE USING -

 SELECT IMAGE_NO, IMAGE -

 FROM IMAGES;

Note: If you run Oracle8, convert your LONGs to LOBs, as it can be replicated.

23. What is SQL?

SQL, Structured Query Language, is a database query language that was adopted as an industry standard in 1986.
24. What is SQL3?

Among other enhancements, SQL3 supports objects. SQL3 probably won't be complete until 1998; however, Illustra already implements many SQL3 features. More information about SQL3 is available via anonymous ftp to speckle.ncsl.nist.gov:/isowg3.

25. What are the SQL reserved words?

I grep'd the following list out of the sql docs available via anonymous ftp to speckle.ncsl.nist.gov:/isowg3. SQL3 words are not set in stone, but you'd do well to avoid them.

 From sql1992.txt:

AFTER, ALIAS, ASYNC, BEFORE, BOOLEAN, BREADTH, COMPLETION, CALL, CYCLE, DATA, DEPTH, DICTIONARY, EACH, ELSEIF, EQUALS, GENERAL, IF, IGNORE, LEAVE, LESS, LIMIT, LOOP, MODIFY, NEW, NONE, OBJECT, OFF, OID, OLD, OPERATION, OPERATORS, OTHERS, PARAMETERS, PENDANT, PREORDER, PRIVATE, PROTECTED, RECURSIVE, REF, REFERENCING, REPLACE, RESIGNAL, RETURN, RETURNS, ROLE, ROUTINE, ROW, SAVEPOINT, SEARCH, SENSITIVE, SEQUENCE, SIGNAL, SIMILAR, SQLEXCEPTION, SQLWARNING, STRUCTURE, TEST, THERE, TRIGGER, TYPE, UNDER, VARIABLE, VIRTUAL, VISIBLE, WAIT, WHILE, WITHOUT

From sql1992.txt (Annex E):

ABSOLUTE, ACTION, ADD, ALLOCATE, ALTER, ARE, ASSERTION, AT, BETWEEN, BIT, BIT_LENGTH, BOTH, CASCADE, CASCADED, CASE, CAST, CATALOG, CHAR_LENGTH, CHARACTER_LENGTH, COALESCE, COLLATE, COLLATION, COLUMN, CONNECT, CONNECTION, CONSTRAINT, CONSTRAINTS, CONVERT, CORRESPONDING, CROSS, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_USER, DATE, DAY, DEALLOCATE, DEFERRABLE, DEFERRED, DESCRIBE, DESCRIPTOR, DIAGNOSTICS, DISCONNECT, DOMAIN, DROP, ELSE, END-EXEC, EXCEPT, EXCEPTION, EXECUTE, EXTERNAL, EXTRACT, FALSE, FIRST, FULL, GET, GLOBAL, HOUR, IDENTITY, IMMEDIATE, INITIALLY, INNER, INPUT, INSENSITIVE, INTERSECT, INTERVAL, ISOLATION, JOIN, LAST, LEADING, LEFT, LEVEL, LOCAL, LOWER, MATCH, MINUTE, MONTH, NAMES, NATIONAL, NATURAL, NCHAR, NEXT, NO, NULLIF, OCTET_LENGTH, ONLY, OUTER, OUTPUT, OVERLAPS, PAD, PARTIAL, POSITION, PREPARE, PRESERVE, PRIOR, READ, RELATIVE, RESTRICT, REVOKE, RIGHT, ROWS, SCROLL, SECOND, SESSION, SESSION_USER, SIZE, SPACE, SQLSTATE, SUBSTRING, SYSTEM_USER, TEMPORARY, THEN, TIME, TIMESTAMP, TIMEZONE_HOUR, TIMEZONE_MINUTE, TRAILING, TRANSACTION, TRANSLATE, TRANSLATION, TRIM, TRUE, UNKNOWN, UPPER, USAGE, USING, VALUE, VARCHAR, VARYING, WHEN, WRITE, YEAR, ZONE

From sql3part2.txt (Annex E)

ACTION, ACTOR, AFTER, ALIAS, ASYNC, ATTRIBUTES, BEFORE, BOOLEAN,

BREADTH, COMPLETION, CURRENT_PATH, CYCLE, DATA, DEPTH, DESTROY, DICTIONARY, EACH, ELEMENT, ELSEIF, EQUALS, FACTOR, GENERAL, HOLD, IGNORE, INSTEAD, LESS, LIMIT, LIST, MODIFY, NEW, NEW_TABLE, NO, NONE, OFF, OID, OLD, OLD_TABLE, OPERATION, OPERATOR, OPERATORS, PARAMETERS, PATH, PENDANT, POSTFIX, PREFIX, PREORDER, PRIVATE, PROTECTED, RECURSIVE, REFERENCING, REPLACE, ROLE, ROUTINE, ROW, SAVEPOINT, SEARCH, SENSITIVE, SEQUENCE, SESSION, SIMILAR, SPACE, SQLEXCEPTION, SQLWARNING, START, STATE, STRUCTURE, SYMBOL, TERM, TEST, THERE, TRIGGER, TYPE, UNDER, VARIABLE, VIRTUAL, VISIBLE, WAIT, WITHOUT

sql3part4.txt (ANNEX E):

 CALL, DO, ELSEIF, EXCEPTION, IF, LEAVE, LOOP, OTHERS, RESIGNAL,

 RETURN, RETURNS, SIGNAL, TUPLE, WHILE

SQL FAQ: How To's

26. How do you tell what other database objects exist?

Information about databases, users, and objects in a database are stored in the Illustra system catalogs. Illustra provides DBA functions that make querying the system catalogs easier; for example, ml_dbase() lists all databases on an Illustra server:

 * select * from ml_dbase();

 --

 |database_dba |database_name|database_path|database_release|

 --

 |jolly |jolly |jolly |2.0.9 |

 |miro |template1 |template1 |2.0.9 |

 |jolly |testsaif |testsaif |2.0.9 |

 |jiangwu |jiangwu |jiangwu |2.0.9 |

 |jta |jta |jta |2.0.9 |

 |pbrown |pbrown |pbrown |2.0.9 |

 --

 6 rows selected

The following error means the dba functions have not been installed:

 * select * from ml_dbase();

 XP0038:Cannot find a function named 'ml_dbase' taking no arguments

As the owner of a database, you can install the functions like this:

 % cd $MI_HOME/examples/dba_funcs

 % make MI_DATABASE=your_dbname all

The Illustra system adminstrator can install these functions in the template1 database so a database will automatically get them at the time it is created.

The DBA functions are fully documented in Chapter 6 of the Illustra System Administrator's Guide. Here is the summary list from that reference:

 ml_aggs([owner]) information about aggregates

 ml_cstat(object_name) column statistics for object

 ml_dbase([dba]) current databases

 ml_dbase_dr(dbname) dump times and logging status

 ml_finfo([owner [,language]]) information about functions

 ml_fsrc(func_name) source of sql functions

 ml_priv([grantee]) privileges

 ml_process([user_name]) server processes

 ml_rules(owner [, table_name]) information about rules

 ml_stat_procs(pid) lock status for process

 ml_tables([owner [,kind]]) tables, views and indices

 ml_tcols(object_name) column information for object

 ml_tindex(table_name) indices for table

 ml_tstat(object_name) statistics for objects

 ml_typecols(type_name) column information for type

 ml_types() user-defined types

 ml_user() user information

27. How do you extract just the month from an abstime?

substring extracts just a portion of a string:

 * return('now'::abstime) as Now;

 |Now |

 |Mon Apr 18 09:06:10.490753 1994 PDT|

 one row selected

 * return substring('now'::abstime::text from 5 for 3) as Month;

 |Month |

 |Apr |

 one row selected

For more examples, see section 3.5.7.2 in the Illustra User's Guide.

28. How do you remove duplicate entries from a table?

Table foo has duplicate entries for Donald Duck:

 * select * from foo;

 |first_name |last_name |

 |Donald |Duck |

 |Mighty |Mouse |

 |Donald |Duck |

 3 rows selected

This note describes two approaches for removing the duplicates:

1. Using a temporary table to remove duplicates.

2. Using oid to remove duplicates.

1. Using a temporary table to remove duplicates.

The steps for this method are:

1. select distinct into a temporary table.

2. * create table foo2 as select distinct first_name, last_name from foo;

3. Doublecheck the results.

4. * select * from foo2;

5. -----------------------------

6. |first_name |last_name |

7. -----------------------------

8. |Donald |Duck |

9. |Mighty |Mouse |

10. -----------------------------

11. 2 rows selected

12. Drop the first table.

13. * drop table foo;

14. Rename the temporary table to the original table.

15. * alter table foo2 rename to foo;

Don't forget to recreate any indexes and permissions that were on the original table.

2. Using oid to remove duplicates.

This method describes how to remove duplicate entries from a table by using the oid. Syntax is for Illustra Version 2.

Here is the original state of table foo that has duplicate entries for Donald Duck:

 * select oid, * from foo;

 |oid |first_name |last_name |

 |202f.2001 |Donald |Duck |

 |202f.2002 |Mighty |Mouse |

 |202f.2003 |Donald |Duck |

 3 rows selected

The goal is to leave the row with the lowest oid in place (202f.2001 in this example) and to delete all rows with an oid higher than this one (202f.2003 in this example). The steps are to:

1. Find all rows that have an oid greater than the min oid.

2. * select f1.oid, f1.first_name, f1.last_name

3. from foo f1

4. where f1.oid::text >

5. (select min(f2.oid::text)

6. from foo f2

7. where f1.first_name=f2.first_name

8. and f1.last_name=f2.last_name);

9. ---

10. |oid |first_name |last_name |

11. ---

12. |202f.2003 |Donald |Duck |

13. ---

14. one row selected
15. Delete all rows that have an oid greater than the min oid.
Change the select query to actually delete the duplicate row. Do this inside a transaction; and don't commit the change unless the results look correct.

16. * begin transaction;

17. * delete from foo f1

18. where f1.oid::text >

19. (select min(f2.oid::text)

20. from foo f2

21. where f1.first_name=f2.first_name

22. and f1.last_name=f2.last_name);

23. one row deleted

24. + select * from foo;

25. -----------------------------

26. |first_name |last_name |

27. -----------------------------

28. |Donald |Duck |

29. |Mighty |Mouse |

30. -----------------------------

31. 2 rows selected

32. + end transaction;

29. How does running vacuum make queries run faster?

The query optimizer uses statistics gathered on a table to determine the fastest way to execute a query. You can look at some of this information with the ml_cstat() and ml_tstat() functions. If statistics get out of date, for example if the distribution of values in a column changes dramatically, the optimizer might choose a slower way to execute the query.
The vacuum command invoked with the statistics modifier updates statistics.
Creating an index automatically updates the statistics for the column(s) being indexed.

30. How can I tell what indices a table has?

The ml_tindex() function lists all indices on a table; for example, the following query list all indices on the tables system catalog:

 * select * from ml_tindex('tables');

 |table_name |index_name |archived |keys |

 |tables |tablenameind |f | Column 19 |

 |tables |tableidind |f | Column -2 |

 |tables |tabletypeind |f | Column 17 |

 3 rows selected

31. How can I tell which index Illustra is using?

Call the trace function with the 'Planner.1' argument. For more information, see Appendix E of the Illustra User's Guide.

32. Can I tell Illustra which index to use?

You can provide hints to the Illustra optimizer, including which index to use, with the using clause. For more information, see Appendix E of the Illustra User's Guide.

SQL FAQ: JOINS

· I get too many rows when I join two tables.
· I don't get enough rows when I join two tables.
· Doing joins with Illustra ref().
Cartesian Products

When you join tables, make sure that the number of join predicates in the search condition is one less than the number of tables in the from list. Otherwise, you will get many more rows returned than you probably intended. For example, table english and spanish look like this:

 * select * from english; * select * from spanish;

 ----------------------------- -----------------------------

 |tag |name | |tag |name |

 ----------------------------- -----------------------------

 |1 |one | |2 |dos |

 |2 |two | |3 |tres |

 |3 |three | |4 |cuatro |

 ----------------------------- -----------------------------

 3 rows selected 3 rows selected

If you select from both tables without joining them in the where clause, you get a cartesian product, every possible combination of both:

 * select * from english, spanish;

 |tag |name |tag |name |

 |2 |dos |1 |one |

 |3 |tres |1 |one |

 |4 |cuatro |1 |one |

 |2 |dos |2 |two |

 |3 |tres |2 |two |

 |4 |cuatro |2 |two |

 |2 |dos |3 |three |

 |3 |tres |3 |three |

 |4 |cuatro |3 |three |

 9 rows selected

Most likely, this is not what you had in mind. Since there are two tables in the from_list, one join predicated is needed:

 * select * from english, spanish

 where english.tag = spanish.tag;

 |tag |name |tag |name |

 |2 |dos |2 |two |

 |3 |tres |3 |three |

 2 rows selected

Inner and Outer Joins

A join between two tables does not include any rows from either table that have no matching rows in the other. This is called an inner join and frequently causes confusion since fewer rows are returned than the user expects. For example, tables english and spanish look like this:

 * select * from english; * select * from spanish;

 ----------------------------- -----------------------------

 |tag |name | |tag |name |

 ----------------------------- -----------------------------

 |1 |one | |2 |dos |

 |2 |two | |3 |tres |

 |3 |three | |4 |cuatro |

 ----------------------------- -----------------------------

 3 rows selected 3 rows selected

When you join these two tables, you get only the two rows that have the same tag:

 * select e.name, e.tag, s.name

 from english e, spanish s

 where e.tag = s.tag;

 |name |tag |name |

 |two |2 |dos |

 |three |3 |tres |

 2 rows selected

Row one in table english and row cuatro in table spanish fall into the outer joins:

 Joins

 +--------------+

 left outer ---> | one 1 |

 | +--------------+

 +--> | two | 2 : dos |

 inner join | | | : |

 +--> | three | 3 : tres |

 +--------|- - -+ |

 | 4 cuatro| <--- right outer

 +--------------+

You can select outer join rows by using not exists. This query fetches the row in english that is not in spanish (the left outer join):

 * select e.name as English, e.tag, '--no row --' as Spanish

 from english e

 where not exists

 (select * from spanish s

 where e.tag=s.tag);

 |English |tag |Spanish |

 |one |1 |--no row -- |

 one row selected

This query fetches the row in spanish that is not in english (the right outer join):

 * select '--no entry--' as English, s.tag, s.name as Spanish

 from spanish s

 where not exists

 (select * from english e

 where e.tag=s.tag);

 |English |tag |Spanish |

 |--no entry-- |4 |cuatro |

 one row selected

You can string all statements together with union:

 * select e.name::text as English, e.tag, s.name::text as Spanish

 from english e, spanish s

 where e.tag = s.tag

 union

 select e.name::text, e.tag, '--no entry--'::text

 from english e

 where not exists

 (select * from spanish s

 where e.tag=s.tag)

 union

 select '--no entry--'::text, s.tag, s.name::text

 from spanish s

 where not exists

 (select * from english e

 where e.tag=s.tag)

 order by 2;

 |English |tag |Spanish |

 |one |1 |--no entry-- |

 |two |2 |dos |

 |three |3 |tres |

 |--no entry-- |4 |cuatro |

 4 rows selected

If you think this is a lot of trouble to retrieve outer join data, there's another way to handle known joins in Illustra that will factor in outer join data. Keep reading.

Solving Outer Joins in Illustra with ref()

Confusion with outer joins was described above. This section looks at another way to resolve outer join confusions in Illustra by using ref().

We start by creating the two tables like this and inserting data:

 create table spanish of new type spanish_t

 (name varchar(20),

 tag integer);

 create table english of new type english_t

 (name varchar(20),

 tag integer,

 sname ref(spanish_t));

 insert into english (name, tag) values ('one', 1);

 insert into english (name, tag) values ('two', 2);

 insert into english (name, tag) values ('three', 3);

 insert into spanish (name, tag) values ('dos', 2);

 insert into spanish (name, tag) values ('tres', 3);

 insert into spanish (name, tag) values ('cuatro', 4);

Next we update the reference in english:

 * update english

 set sname = (select unique ref(s1) from spanish s1

 where english.tag = s1.tag);

 3 rows updated

 * select * from english;

 |name |tag |sname |

 |one |1 |NULL |

 |two |2 |202d.2001 |

 |three |3 |202d.2002 |

 3 rows selected

Notice that the select from english returned the oid reference to spanish. You can dereference that oid as follows:

 * select name as english, tag, deref(sname).name as spanish from english;

 |english |tag |spanish |

 |one |1 |NULL |

 |two |2 |dos |

 |three |3 |tres |

 3 rows selected

We can also take it the opposite way by updating the spanish_t type and spanish table as follows:

 * alter type spanish_t

 add column ename ref(english_t);

 * update spanish

 set ename = (select unique ref(e1) from english e1

 where spanish.tag = e1.tag);

 3 rows updated

 * select name as spanish, tag, deref(ename).name as english from spanish;

 |spanish |tag |english |

 |dos |2 |two |

 |tres |3 |three |

 |cuatro |4 |NULL |

 3 rows selected

Finally, we can use union to select from both:

 * select name as english, tag, deref(sname).name as spanish from english

 union

 select deref(ename).name as english, tag, name as spanish from spanish

 order by 2;

 |english |tag |spanish |

 |one |1 |NULL |

 |two |2 |dos |

 |three |3 |tres |

 |NULL |4 |cuatro |

 4 rows selected

Realize that if new rows are inserted into either table, the reference must be set in the tables that references it.

Oracle PL/SQL FAQ

33. What is PL/SQL and what is it used for?

PL/SQL is Oracle's Procedural Language extension to SQL. PL/SQL's language syntax, structure and data types are similar to that of ADA. The PL/SQL language includes object oriented programming techniques such as encapsulation, function overloading, information hiding (all but inheritance). PL/SQL is commonly used to write data-centric programs to manipulate data in an Oracle database.
34. Should one use PL/SQL or Java to code procedures and triggers?

Internally the Oracle database supports two procedural languages, namely PL/SQL and Java. This leads to questions like "Which of the two is the best?" and "Will Oracle ever desupport PL/SQL in favour of Java?".

Many Oracle applications are based on PL/SQL and it would be difficult of Oracle to ever desupport PL/SQL. In fact, all indications are that PL/SQL still has a bright future ahead of it. Many enhancements are still being made to PL/SQL. For example, Oracle 9iDB supports native compilation of Pl/SQL code to binaries.

PL/SQL and Java appeal to different people in different job roles. The following table briefly describes the difference between these two language environments:

PL/SQL:

 Data centric and tightly integrated into the database

 Proprietary to Oracle and difficult to port to other database systems

 Data manipulation is slightly faster in PL/SQL than in Java

 Easier to use than Java (depending on your background)

Java:

 Open standard, not proprietary to Oracle

 Incurs some data conversion overhead between the Database and Java type systems

 Java is more difficult to use (depending on your background)

35. How can one see if somebody modified any code?

Code for stored procedures, functions and packages is stored in the Oracle Data Dictionary. One can detect code changes by looking at the LAST_DDL_TIME column in the USER_OBJECTS dictionary view. Example:
 SELECT OBJECT_NAME,

 TO_CHAR(CREATED, 'DD-Mon-RR HH24:MI') CREATE_TIME,

 TO_CHAR(LAST_DDL_TIME, 'DD-Mon-RR HH24:MI') MOD_TIME,

 STATUS

 FROM USER_OBJECTS

 WHERE LAST_DDL_TIME > '&CHECK_FROM_DATE';

36. How can one search PL/SQL code for a string/ key value?

The following query is handy if you want to know where a certain table, field or expression is referenced in your PL/SQL source code.
 SELECT TYPE, NAME, LINE

 FROM USER_SOURCE

 WHERE UPPER(TEXT) LIKE '%&KEYWORD%';

37. How can one keep a history of PL/SQL code changes?

One can build a history of PL/SQL code changes by setting up an AFTER CREATE schema (or database) level trigger (available from Oracle 8.1.7). This way one can easily revert to previous code should someone make any catastrophic changes. Look at this example:
 CREATE TABLE SOURCE_HIST -- Create history table

 AS SELECT SYSDATE CHANGE_DATE, USER_SOURCE.*

 FROM USER_SOURCE WHERE 1=2;

 CREATE OR REPLACE TRIGGER change_hist -- Store code in hist table

AFTER CREATE ON SCOTT.SCHEMA -- Change SCOTT to your schema name

 DECLARE

 BEGIN

 if DICTIONARY_OBJ_TYPE in ('PROCEDURE', 'FUNCTION',

 'PACKAGE', 'PACKAGE BODY', 'TYPE') then

 -- Store old code in SOURCE_HIST table

 INSERT INTO SOURCE_HIST

 SELECT sysdate, user_source.* FROM USER_SOURCE

 WHERE TYPE = DICTIONARY_OBJ_TYPE

 AND NAME = DICTIONARY_OBJ_NAME;

 end if;

 EXCEPTION

 WHEN OTHERS THEN

 raise_application_error(-20000, SQLERRM);

 END;

 /

 show errors

38. How can I protect my PL/SQL source code?

PL/SQL V2.2, available with Oracle7.2, implements a binary wrapper for PL/SQL programs to protect the source code.
This is done via a standalone utility that transforms the PL/SQL source code into portable binary object code (somewhat larger than the original). This way you can distribute software without having to worry about exposing your proprietary algorithms and methods. SQL*Plus and SQL*DBA will still understand and know how to execute such scripts. Just be careful, there is no "decode" command available.
The syntax is:

wrap iname=myscript.sql oname=xxxx.plb

39. Can one print to the screen from PL/SQL?

One can use the DBMS_OUTPUT package to write information to an output buffer. This buffer can be displayed on the screen from SQL*Plus if you issue the SET SERVEROUTPUT ON; command. For example:

set serveroutput on

begin

 dbms_output.put_line('Look Ma, I can print from PL/SQL!!!');

end;

/

DBMS_OUTPUT is useful for debugging PL/SQL programs. However, if you print too much, the output buffer will overflow. In that case, set the buffer size to a larger value, eg.: set serveroutput on size 200000

If you forget to set serveroutput on type SET SERVEROUTPUT ON once you remember, and then EXEC NULL;. If you haven't cleared the DBMS_OUTPUT buffer with the disable or enable procedure, SQL*Plus will display the entire contents of the buffer when it executes this dummy PL/SQL block.

40. Can one read/write files from PL/SQL?

Included in Oracle 7.3 is an UTL_FILE package that can read and write operating system files. The directory you intend writing to has to be in your INIT.ORA file (see UTL_FILE_DIR=... parameter). Before Oracle 7.3 the only means of writing a file was to use DBMS_OUTPUT with the SQL*Plus SPOOL command.
Copy this example to get started:

DECLARE

 fileHandler UTL_FILE.FILE_TYPE;

BEGIN

 fileHandler := UTL_FILE.FOPEN('/tmp', 'myfile', 'w');

 UTL_FILE.PUTF(fileHandler, 'Look ma, I''m writing to a

file!!!\n');

 UTL_FILE.FCLOSE(fileHandler);

EXCEPTION

 WHEN utl_file.invalid_path THEN

 raise_application_error(-20000, 'ERROR: Invalid path for

file or path not in INIT.ORA.');

END;

/

41. Can one call DDL statements from PL/SQL?

One can call DDL statements like CREATE, DROP, TRUNCATE, etc. from PL/SQL by using the "EXECUTE IMMEDATE" statement. Users running Oracle versions below 8i can look at the DBMS_SQL package (see FAQ about Dynamic SQL).

begin

 EXECUTE IMMEDIATE 'CREATE TABLE X(A DATE)';

end;

NOTE: The DDL statement in quotes should not be terminated with a semicolon.

42. Can one use dynamic SQL statements from PL/SQL?

Starting from Oracle8i one can use the "EXECUTE IMMEDIATE" statement to execute dynamic SQL and PL/SQL statements (statements created at run-time). Look at these examples. Note that statements are NOT terminated by semicolons:

EXECUTE IMMEDIATE 'CREATE TABLE x (a NUMBER)';

-- Using bind variables...

sql_stmt := 'INSERT INTO dept VALUES (:1, :2, :3)';

EXECUTE IMMEDIATE sql_stmt USING dept_id, dept_name, location;

 -- Returning a cursor...

sql_stmt := 'SELECT * FROM emp WHERE empno = :id';

EXECUTE IMMEDIATE sql_stmt INTO emp_rec USING emp_id;

One can also use the older DBMS_SQL package (V2.1 and above) to execute dynamic statements. Look at these examples:

CREATE OR REPLACE PROCEDURE DYNSQL AS

 cur integer;

 rc integer;

BEGIN

 cur := DBMS_SQL.OPEN_CURSOR;

 DBMS_SQL.PARSE(cur, 'CREATE TABLE X (Y DATE)',

DBMS_SQL.NATIVE);

 rc := DBMS_SQL.EXECUTE(cur);

 DBMS_SQL.CLOSE_CURSOR(cur);

END;

/

More complex DBMS_SQL example using bind variables:

CREATE OR REPLACE PROCEDURE DEPARTMENTS(NO IN DEPT.DEPTNO%TYPE) AS

 v_cursor integer;

 v_dname char(20);

 v_rows integer;

BEGIN

 v_cursor := DBMS_SQL.OPEN_CURSOR;

 DBMS_SQL.PARSE(v_cursor, 'select dname from dept where deptno > :x',

DBMS_SQL.V7);

 DBMS_SQL.BIND_VARIABLE(v_cursor, ':x', no);

 DBMS_SQL.DEFINE_COLUMN_CHAR(v_cursor, 1, v_dname, 20);

 v_rows := DBMS_SQL.EXECUTE(v_cursor);

 loop

 if DBMS_SQL.FETCH_ROWS(v_cursor) = 0 then

 exit;

 end if;

 DBMS_SQL.COLUMN_VALUE_CHAR(v_cursor, 1, v_dname);

 DBMS_OUTPUT.PUT_LINE('Deptartment name: '||v_dname);

 end loop;

 DBMS_SQL.CLOSE_CURSOR(v_cursor);

EXCEPTION

 when others then

 DBMS_SQL.CLOSE_CURSOR(v_cursor);

 raise_application_error(-20000, 'Unknown Exception Raised:

'||sqlcode||' '||sqlerrm);

END;

/

43. What is the difference between %TYPE and %ROWTYPE?

The %TYPE and %ROWTYPE constructs provide data independence, reduces maintenance costs, and allows programs to adapt as the database changes to meet new business needs.
%ROWTYPE is used to declare a record with the same types as found in the specified database table, view or cursor. Example:

DECLARE

 v_EmpRecord emp%ROWTYPE;

%TYPE is used to declare a field with the same type as that of a specified table's column. Example:

DECLARE

 v_EmpNo emp.empno%TYPE;

44. What is the result of comparing NULL with NULL?

NULL is neither equal to NULL, nor it is not equal to NULL. Any comparison to NULL is evaluated to NULL. Look at this code example to convince yourself.

declare

 a number := NULL;

 b number := NULL;

begin

 if a=b then

 dbms_output.put_line('True, NULL = NULL');

 elsif a<>b then

 dbms_output.put_line('False, NULL <> NULL');

 else

 dbms_output.put_line('Undefined NULL is neither = nor <> to

NULL');

 end if;

end;

45. How does one get the value of a sequence into a PL/SQL variable?

As you might know, one cannot use sequences directly from PL/SQL. Oracle (for some silly reason) prohibits this:

i := sq_sequence.NEXTVAL;

However, one can use embedded SQL statements to obtain sequence values:

select sq_sequence.NEXTVAL into :i from dual;

46. Can one execute an operating system command from PL/SQL?

There is no direct way to execute operating system commands from PL/SQL in Oracle7. However, one can write an external program (using one of the precompiler languages, OCI or Perl with Oracle access modules) to act as a listener on a database pipe (SYS.DBMS_PIPE). Your PL/SQL program then put requests to run commands in the pipe, the listener picks it up and run the requests. Results are passed back on a different database pipe. For an Pro*C example, see chapter 8 of the Oracle Application Developers Guide.
In Oracle8 one can call external 3GL code in a dynamically linked library (DLL or shared object). One just write a library in C/ C++ to do whatever is required. Defining this C/C++ function to PL/SQL makes it executable. Look at this External Procedure example.

47. How does one loop through tables in PL/SQL?

Look at the following nested loop code example.

DECLARE

 CURSOR dept_cur IS

 SELECT deptno

 FROM dept

 ORDER BY deptno;

 -- Employee cursor all employees for a dept number

 CURSOR emp_cur (v_dept_no DEPT.DEPTNO%TYPE) IS

 SELECT ename

 FROM emp

 WHERE deptno = v_dept_no;

BEGIN

 FOR dept_rec IN dept_cur LOOP

 dbms_output.put_line('Employees in Department

'||TO_CHAR(dept_rec.deptno));

 FOR emp_rec in emp_cur(dept_rec.deptno) LOOP

 dbms_output.put_line('...Employee is '||emp_rec.ename);

 END LOOP;

 END LOOP;

END;

/

48. How often should one COMMIT in a PL/SQL loop? / What is the best commit strategy?

Contrary to popular believe, one should COMMIT less frequently within a PL/SQL loop to prevent ORA-1555 (Snapshot too old) errors. The higher the frequency of commit, the sooner the extents in the rollback segments will be cleared for new transactions, causing ORA-1555 errors.
To fix this problem one can easily rewrite code like this:

FOR records IN my_cursor LOOP

 ...do some stuff...

 COMMIT;

END LOOP;

... to ...

FOR records IN my_cursor LOOP

 ...do some stuff...

 i := i+1;

 IF mod(i, 10000) THEN -- Commit every 10000 records

 COMMIT;

 END IF;

END LOOP;

If you still get ORA-1555 errors, contact your DBA to increase the rollback segments.

NOTE: Although fetching across COMMITs work with Oracle, is not supported by the ANSI standard.

49. I can SELECT from SQL*Plus but not from PL/SQL. What is wrong?

PL/SQL respect object privileges given directly to the user, but does not observe privileges given through roles. The consequence is that a SQL statement can work in SQL*Plus, but will give an error in PL/SQL. Choose one of the following solutions:
· Grant direct access on the tables to your user. Do not use roles!

· GRANT select ON scott.emp TO my_user;

· Define your procedures with invoker rights (Oracle 8i and higher);

· Move all the tables to one user/schema.

50. What is a mutating and constraining table?

"Mutating" means "changing". A mutating table is a table that is currently being modified by an update, delete, or insert statement. When a trigger tries to reference a table that is in state of flux (being changed), it is considered "mutating" and raises an error since Oracle should not return data that has not yet reached its final state.
Another way this error can occur is if the trigger has statements to change the primary, foreign or unique key columns of the table off which it fires. If you must have triggers on tables that have referential constraints, the workaround is to enforce the referential integrity through triggers as well.

There are several restrictions in Oracle regarding triggers:

· A row-level trigger cannot query or modify a mutating table. (Of course, NEW and OLD still can be accessed by the trigger) .

· A statement-level trigger cannot query or modify a mutating table if the trigger is fired as the result of a CASCADE delete.

51. Can one pass an object/table as an argument to a remote procedure?

The only way the same object type can be referenced between two databases is via a database link. Note that it is not enough to just use the same type definitions. Look at this example:

-- Database A: receives a PL/SQL table from database B

CREATE OR REPLACE PROCEDURE pcalled(TabX DBMS_SQL.VARCHAR2S) IS

BEGIN

 -- do something with TabX from database B

 null;

END;

/

-- Database B: sends a PL/SQL table to database A

CREATE OR REPLACE PROCEDURE pcalling IS TabX DBMS_SQL.VARCHAR2S@DBLINK2;

BEGIN

 pcalled@DBLINK2(TabX);

END;

/

52. Is it better to put code in triggers or procedures? What is the difference?

In earlier releases of Oracle it was better to put as much code as possible in procedures rather than triggers. At that stage procedures executed faster than triggers as triggers had to be re-compiled every time before executed (unless cached). In more recent releases both triggers and procedures are compiled when created (stored p-code) and one can add as much code as one likes in either procedures or triggers.
53. Is there a PL/SQL Engine in SQL*Plus?

No. Unlike Oracle Forms, SQL*Plus does not have an embedded PL/SQL engine. Thus, all your PL/SQL code is sent directly to the database engine for execution. This makes it much more efficient as SQL statements are not stripped off and sent to the database individually.
Oracle SQL*Loader FAQ

54. What is SQL*Loader and what is it used for?

SQL*Loader is a bulk loader utility used for moving data from external files into the Oracle database. Its syntax is similar to that of the DB2 Load utility, but comes with more options. SQL*Loader supports various load formats, selective loading, and multi-table loads.
55. Can one load variable and fix length data records?

Yes, look at the following control file examples. In the first we will load delimited data (variable length):
 LOAD DATA

 INFILE *

 INTO TABLE load_delimited_data

 FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"'

 TRAILING NULLCOLS
 (data1,

 data2

)

 BEGINDATA

 11111,AAAAAAAAAA

 22222,"A,B,C,D,"

If you need to load positional data (fixed length), look at the following control file example:

 LOAD DATA

 INFILE *

 INTO TABLE load_positional_data

 (data1 POSITION(1:5),

 data2 POSITION(6:15)
)

 BEGINDATA

 11111AAAAAAAAAA

 22222BBBBBBBBBB

56. Can one skip header records load while loading?

Use the "SKIP n" keyword, where n = number of logical rows to skip. Look at this example:
 LOAD DATA

 INFILE *

 INTO TABLE load_positional_data

 SKIP 5

 (data1 POSITION(1:5),

 data2 POSITION(6:15)
)

 BEGINDATA

 11111AAAAAAAAAA

 22222BBBBBBBBBB

57. Can one modify data as it loads into the database?

Data can be modified as it loads into the Oracle Database. Note that this only applies for the conventional load path and not for direct path loads.
 LOAD DATA

 INFILE *

 INTO TABLE modified_data

 (rec_no "my_db_sequence.nextval",

 region CONSTANT '31',

 time_loaded "to_char(SYSDATE, 'HH24:MI')",

 data1 POSITION(1:5) ":data1/100",

 data2 POSITION(6:15) "upper(:data2)",

 data3 POSITION(16:22)"to_date(:data3, 'YYMMDD')"
)

 BEGINDATA

 11111AAAAAAAAAA991201

 22222BBBBBBBBBB990112

 LOAD DATA

 INFILE 'mail_orders.txt'

 BADFILE 'bad_orders.txt'

 APPEND

 INTO TABLE mailing_list

 FIELDS TERMINATED BY ","

 (addr,

 city,

 state,

 zipcode,

 mailing_addr "decode(:mailing_addr, null, :addr,

:mailing_addr)",

 mailing_city "decode(:mailing_city, null, :city,

:mailing_city)",

 mailing_state

)

58. Can one load data into multiple tables at once?

Look at the following control file:
 LOAD DATA

 INFILE *

 REPLACE

 INTO TABLE emp

 WHEN empno != ' '
 (empno POSITION(1:4) INTEGER EXTERNAL,

 ename POSITION(6:15) CHAR,

 deptno POSITION(17:18) CHAR,

 mgr POSITION(20:23) INTEGER EXTERNAL

)

 INTO TABLE proj

 WHEN projno != ' '
 (projno POSITION(25:27) INTEGER EXTERNAL,

 empno POSITION(1:4) INTEGER EXTERNAL

)

59. Can one selectively load only the records that one need?

Look at this example, (01) is the first character, (30:37) are characters 30 to 37:
 LOAD DATA

 INFILE 'mydata.dat' BADFILE 'mydata.bad' DISCARDFILE 'mydata.dis'

 APPEND

 INTO TABLE my_selective_table

 WHEN (01) <> 'H' and (01) <> 'T' and (30:37) = '19991217'
 (

 region CONSTANT '31',

 service_key POSITION(01:11) INTEGER EXTERNAL,

 call_b_no POSITION(12:29) CHAR

)

60. Can one skip certain columns while loading data?

One cannot use POSTION(x:y) with delimited data. Luckily, from Oracle 8i one can specify FILLER columns. FILLER columns are used to skip columns/fields in the load file, ignoring fields that one does not want. Look at this example:
 LOAD DATA

 TRUNCATE INTO TABLE T1

 FIELDS TERMINATED BY ','

 (field1,

 field2 FILLER,

 field3

)

61. How does one load multi-line records?

One can create one logical record from multiple physical records using one of the following two clauses:
· CONCATENATE: - use when SQL*Loader should combine the same number of physical records together to form one logical record.

· CONTINUEIF - use if a condition indicates that multiple records should be treated as one. Eg. by having a '#' character in column 1.

62. How can get SQL*Loader to COMMIT only at the end of the load file?

One cannot, but by setting the ROWS= parameter to a large value, committing can be reduced. Make sure you have big rollback segments ready when you use a high value for ROWS=.
63. What is SQL*Plus and where does it come from?

SQL*Plus is a command line SQL and PL/SQL language interface and reporting tool that ships with the Oracle Database Client and Server. It can be used interactively or driven from scripts. SQL*Plus is frequently used by DBAs and Developers to interact with the Oracle database.
SQL*Plus's predecessor was called UFI (User Friendly Interface). UFI was included in the first releases of Oracle, its interface was extremely primitive and anything but user friendly.

64. What are the basic SQL*Plus commands?

The following SQL*Plus commands are available:
	ACCEPT
	Get input from the user

	DEFINE
	Declare a variable (short: DEF)

	DESCRIBE
	Lists the attributes of tables and other objects (short: DESC)

	EDIT
	Places you in an editor so you can edit a SQL command (short: ED)

	EXIT or QUIT
	Disconnect from the database and terminate SQL*Plus

	GET
	Retrieves a SQL file and places it into the SQL buffer

	HOST
	Issue an operating system command (short: !)

	LIST
	Displays the last command executed/ command in the SQL buffer (short: L)

	PROMPT
	Display a text string on the screen. Eg prompt Hello World!!!

	RUN
	List and Run the command stored in the SQL buffer (short: /)

	SAVE
	Saves command in the SQL buffer to a file. Eg "save x" will create a script file called x.sql

	SET
	Modify the SQL*Plus environment eg. SET PAGESIZE 23

	SHOW
	Show environment settings (short: SHO). Eg SHOW ALL, SHO PAGESIZE etc.

	SPOOL
	Send output to a file. Eg "spool x" will save STDOUT to a file called x.lst

	START
	Run a SQL script file (short: @)

65. What is AFIEDT.BUF?

AFIEDT.BUF is the SQL*Plus default edit save file. When you issue the command "ed" or "edit" without arguments, the last SQL or PL/SQL command will be saved to a file called AFIEDT.BUF and opened in the default editor.
In the prehistoric days when SQL*Plus was called UFI, the file name was "ufiedt.buf", short for UFI editing buffer.

When new features were added to UFI, it was the initially named Advanced UFI and the filename was changed to "aufiedt.buf" and then to "afiedt.buf". They presumably needed to keep the name short for compatibility with some of the odd operating systems that Oracle supported in those days.

The name "Advanced UFI" was never used officially, as the name was changed to SQL*Plus before this version was released.

You can overwrite the default edit save file name like this:

SET EDITFILE "afiedt.buf"

65. What is the difference between @ and @@?

The @ (at symbol) is equivalent to the START command and is used to run SQL*Plus command scripts.
A single @ symbol runs the script in your current directory, or one specified with a full or relative path, or one that is found in you SQLPATH or ORACLE_PATH.

@@ will start a sqlplus script that is in the same directory as the script that called it (relative to the directory of the current script). This is normally used for nested command files.

66. What is the difference between & and &&?

"&" is used to create a temporary substitution variable and will prompt you for a value every time it is referenced.
"&&" is used to create a permanent substitution variable as with the DEFINE command and the OLD_VALUE or NEW_VALUE clauses of a COLUMN statement. Once you have entered a value it will use that value every time the variable is referenced.

Eg: SQL> SELECT * FROM TAB WHERE TNAME LIKE '%&TABLE_NAME.%';

67. How can one disable SQL*Plus formatting?

Issue the following SET commands to disable all SQL*Plus formatting:
 SET ECHO OFF

 SET NEWPAGE 0

 SET SPACE 0

 SET PAGESIZE 0

 SET FEEDBACK OFF

 SET HEADING OFF

 SET TRIMSPOOL ON

These settings can also be entered on one line, eg.:

SET ECHO OFF NEWPAGE 0 SPACE 0 PAGESIZE 0 FEED OFF HEAD OFF TRIMSPOOL ON

68. Can one send operating system parameters to SQL*Plus?

One can pass operating system variables to sqlplus using this syntax:

sqlplus username/password @cmdfile.sql var1 var2 var3

Parameter var1 will be mapped to SQL*Plus variable &1, var2 to &2, etc. Look at this example:

sqlplus scott/tiger @x.sql '"test parameter"' dual

Where x.sql consists of:

select '&1' from &2;

exit 5;

69. Can one copy tables with LONG columns from one database to another?

About the fastest way of copying data between databases and schemas are by using the SQL*Plus COPY statement. Look at this example:

COPY FROM SCOTT/TIGER@LOCAL_DB TO SCOTT/TIGER@REMOTE_DB -

CREATE IMAGE_TABLE USING -

 SELECT IMAGE_NO, IMAGE -

 FROM IMAGES;

70. What is a mutating table error and how can you get around it?

This happens with triggers. It occurs because the trigger is trying to update a row it is currently using. The usual fix involves either use of views or temporary tables so the database is selecting from one while updating the other.

71. What packages (if any) has Oracle provided for use by developers?

Oracle provides the DBMS_ series of packages. There are many which developers should be aware of such as DBMS_SQL, DBMS_PIPE, DBMS_TRANSACTION, DBMS_LOCK, DBMS_ALERT, DBMS_OUTPUT, DBMS_JOB, DBMS_UTILITY, DBMS_DDL, UTL_FILE. If they can mention a few of these and describe how they used them, even better. If they include the SQL routines provided by Oracle, great, but not really what was asked.

72. Describe the use of PL/SQL tables

Expected answer: PL/SQL tables are scalar arrays that can be referenced by a binary integer. They can be used to hold values for use in later queries or calculations. In Oracle 8 they will be able to be of the %ROWTYPE designation, or RECORD.

73. When is a declare statement needed ?

The DECLARE statement is used in PL/SQL anonymous blocks such as with stand alone, non-stored PL/SQL procedures. It must come first in a PL/SQL stand alone file if it is used.

74. In what order should a open/fetch/loop set of commands in a PL/SQL block be implemented if you use the %NOTFOUND cursor variable in the exit when statement? Why?

OPEN then FETCH then LOOP followed by the exit when. If not specified in this order will result in the final return being done twice because of the way the %NOTFOUND is handled by PL/SQL.

75. What are SQLCODE and SQLERRM and why are they important for PL/SQL developers?

SQLCODE returns the value of the error number for the last error encountered. The SQLERRM returns the actual error message for the last error encountered. They can be used in exception handling to report, or, store in an error log table, the error that occurred in the code. These are especially useful for the WHEN OTHERS exception.

76. How can you find within a PL/SQL block, if a cursor is open?

Use the %ISOPEN cursor status variable.

77. How can you generate debugging output from PL/SQL?

Use the DBMS_OUTPUT package. Another possible method is to just use the SHOW ERROR command, but this only shows errors. The DBMS_OUTPUT package can be used to show intermediate results from loops and the status of variables as the procedure is executed. The new package UTL_FILE can also be used.

78. What are the types of triggers?

There are 12 types of triggers in PL/SQL that consist of combinations of the BEFORE, AFTER, ROW, TABLE, INSERT, UPDATE, DELETE and ALL key words:

BEFORE ALL ROW INSERT

AFTER ALL ROW INSERT

BEFORE INSERT

AFTER INSERT

etc.

79. How can variables be passed to a SQL routine?

By use of the & symbol. For passing in variables the numbers 1-8 can be used (&1, &2,...,&8) to pass the values after the command into the SQLPLUS session. To be prompted for a specific variable, place the ampersanded variable in the code itself:

 “select * from dba_tables where owner=&owner_name;” . Use of double ampersands tells SQLPLUS to resubstitute the value for each subsequent use of the variable, a single ampersand will cause a reprompt for the value unless an ACCEPT statement is used to get the value from the user.

80. You want to include a carriage return/linefeed in your output from a SQL script, how can you do this?

The best method is to use the CHR() function (CHR(10) is a return/linefeed) and the concatenation function “||”. Another method, although it is hard to document and isn’t always portable is to use the return/linefeed as a part of a quoted string.

81. How can you call a PL/SQL procedure from SQL?

By use of the EXECUTE (short form EXEC) command.

82. How do you execute a host operating system command from within SQL?

By use of the exclamation point “!” (in UNIX and some other OS) or the HOST (HO) command.

83. You want to use SQL to build SQL, what is this called and give an example

This is called dynamic SQL. An example would be:

set lines 90 pages 0 termout off feedback off verify off spool drop_all.sql

select ‘drop user ‘||username||’ cascade;’ from dba_users

where username not in (“SYS’,’SYSTEM’); spool off

Essentially you are looking to see that they know to include a command (in this case DROP USER...CASCADE;) and that you need to concatenate using the ‘||’ the values selected from the database.

84. What SQLPlus command is used to format output from a select?

This is best done with the COLUMN command.

85. You want to group the following set of select returns, what can you group on?

Max(sum_of_cost), min(sum_of_cost), count(item_no), item_no

Expected answer: The only column that can be grouped on is the “item_no” column, the rest have aggregate functions associated with them.

86. What special Oracle feature allows you to specify how the cost based system treats a SQL statement?

The COST based system allows the use of HINTs to control the optimizer path selection. If they can give some example hints such as FIRST ROWS, ALL ROWS, USING INDEX, STAR, even better.

87. You want to determine the location of identical rows in a table before attempting to place a unique index on the table, how can this be done?

Oracle tables always have one guaranteed unique column, the rowid column. If you use a min/max function against your rowid and then select against the proposed primary key you can squeeze out the rowids of the duplicate rows pretty quick. For example:

select rowid from emp e

where e.rowid > (select min(x.rowid)

from emp x

where x.emp_no = e.emp_no);

In the situation where multiple columns make up the proposed key, they must all be used in the where clause.

88. What is a Cartesian product?

A Cartesian product is the result of an unrestricted join of two or more tables. The result set of a three table Cartesian product will have x * y * z number of rows where x, y, z correspond to the number of rows in each table involved in the join.

89. You are joining a local and a remote table, the network manager complains about the traffic involved, how can you reduce the network traffic?

Push the processing of the remote data to the remote instance by using a view to pre-select the information for the join. This will result in only the data required for the join being sent across.

90. What is the default ordering of an ORDER BY clause in a SELECT statement?

Expected answer: Ascending

91. What is explain plan and how is it used?

The EXPLAIN PLAN command is a tool to tune SQL statements. To use it you must have an explain_table generated in the user you are running the explain plan for. This is created using the utlxplan.sql script. Once the explain plan table exists you run the explain plan command giving as its argument the SQL statement to be explained. The explain_plan table is then queried to see the execution plan of the statement. Explain plans can also be run using tkprof.

92. How do you set the number of lines on a page of output? The width?

The SET command in SQLPLUS is used to control the number of lines generated per page and the width of those lines, for example SET PAGESIZE 60 LINESIZE 80 will generate reports that are 60 lines long with a line width of 80 characters. The PAGESIZE and LINESIZE options can be shortened to PAGES and LINES.

93. How do you prevent output from coming to the screen?

The SET option TERMOUT controls output to the screen. Setting TERMOUT OFF turns off screen output. This option can be shortened to TERM.

94. How do you prevent Oracle from giving you informational messages during and after a SQL statement execution?

The SET options FEEDBACK and VERIFY can be set to OFF.

95. How do you generate file output from SQL?

Expected answer: By use of the SPOOL command

96. What are Background processes in Oracle and what are they.

There are basically 9 Processes but in a general system we need to mention the first five background processes. They do the house keeping activities for the Oracle and are common in any system.

The various background processes in oracle are

a) Data Base Writer (DBWR):

Data Base Writer Writes Modified blocks from Database buffer cache to Data Files. This is required since the data is not written whenever a transaction is committed.

b) LogWriter (LGWR):

LogWriter writes the redo log entries to disk. Redo Log data is generated in redo log buffer of SGA. As transactions commit and log buffer fills, LGWR writes log entries into a online redo log file.

c) System Monitor (SMON):

The System Monitor performs instance recovery at instance startup. This is useful for recovery from system failure

d) Process Monitor (PMON):

The Process Monitor performs process recovery when user Process fails. Pmon Clears and Frees resources that process was using.

e) Checkpoint (CKPT):

At Specified times, all modified database buffers in SGA are written to data files by DBWR at Checkpoints and Updating all data files and control files of database to indicate the most recent checkpoint

f) Archieves (ARCH) ::

The Archiver copies online redo log files to archival storal when they are busy.

g) Recoveror (RECO) ::

The Recoveror is used to resolve the distributed transaction in network

h) Dispatcher (Dnnn) ::

The Dispatcher is useful in Multi Threaded Architecture

i) Lckn ::

We can have upto 10 lock processes for inter instance locking in parallel sql.

97. How many types of Sql Statements are there in Oracle

There are basically 6 types of sql statments.

They are

a) Data Defination Language(DDL) :

The DDL statments define and maintain objects and drop objects.

b) Data Manipulation Language(DML) :

The DML statments manipulate database data.

c) Transaction Control Statements:

Manage change by DML

c) Session Control

Used to control the properties of current session enabling and disabling roles and changing .e.g :: Alter Statements, Set Role

d) System Control Statements

Change Properties of Oracle Instance .e.g:: Alter System

e) Embedded Sql

Incorporate DDL,DML and T.C.S in Programming Language.e.g:: Using the Sql Statements in languages such as 'C', Open,Fetch, execute and close

98. What is a Transaction in Oracle

A transaction is a Logical unit of work that compromises one or more SQL Statements executed by a single User. According to ANSI, a transaction begins with first executable statment and ends when it is explicitly commited or rolled back.

99. Key Words Used in Oracle

The Key words that are used in Oracle are:

a. Committing
A transaction is said to be commited when the transaction makes permanent changes resulting from the SQL statements.

b. Rollback

A transaction that retracts any of the changes resulting from SQL statements in Transaction.

c. SavePoint

For long transactions that contain many SQL statements, intermediate markers or savepoints are declared. Savepoints can be used to divide a transaction into smaller points.

d. Rolling Forward ::

Process of applying redo log during recovery is called rolling forward.

e. Cursor

A cursor is a handle (name or a pointer) for the memory associated with a specific statement. A cursor is basically an area allocated by Oracle for executing the Sql Statement. Oracle uses an implicit cursor statement for Single row query and Uses Explicit cursor for a multi row query.

f. System Global Area(SGA) ::

The SGA is a shared memory region allocated by the Oracle that contains Data and control information for one Oracle Instance.It consists of Database Buffer Cache and Redo log Buffer.

g. Program Global Area (PGA) ::

The PGA is a memory buffer that contains data and control information for server process.

h. Database Buffer Cache ::

Database Buffer of SGA stores the most recently used blocks of database data. The set of database buffers in an instance is called Database Buffer Cache.

i. Redo log Buffer

Redo log Buffer of SGA stores all the redo log entries.

j. Redo Log Files

Redo log files are set of files that protect altered database data in memory that has not been written to Data Files. They are basically used for backup when a database crashes.

k. Process

A Process is a 'thread of control' or mechansim in Operating System that executes series of steps.

100. What are Procedure, functions and Packages

Procedures and functions consist of set of PL/SQL statements that are grouped together as a unit to solve a specific problem or perform set of related tasks. Procedures do not Return values while Functions return one One Value

Packages

Packages Provide a method of encapsulating and storing related procedures, functions, variables and other Package Contents

101. What are Database Triggers and Stored Procedures

Database Triggers ::

Database Triggers are Procedures that are automatically executed as a result of insert in, update to, or delete from table. Database triggers have the values old and new to denote the old value in the table before it is deleted and the new indicated the new value that will be used. DT are useful for implementing complex business rules which cannot be enforced using the integrity rules. We can have the trigger as Before trigger or After Trigger and at Statement or Row level.

e.g. operations insert, update ,delete

3 before ,after 3*2.A total of 6 combinations

 At statement level(once for the trigger) or row level(for every execution) 6 * 2 A total of 12.

 Thus a total of 12 combinations are there and the restriction of usage of 12 triggers has been lifted from Oracle 7.3 Onwards.

Stored Procedures
Stored Procedures are Procedures that are stored in Compiled form in the database. The advantage of using the stored procedures is that many users can use the same procedure in compiled and ready to use format.
102. How many Integrity Rules are there and what are they

There are Three Integrity Rules. They are as follows ::

a) Entity Integrity Rule ::

The Entity Integrity Rule enforces that the Primary key cannot be Null.

b) Foreign Key Integrity Rule ::

The FKIR denotes that the relationship between the foreign key and the primary key has to be enforced.When there is data in Child Tables the Master tables cannot be deleted.

c) Business Integrity Rules ::

The Third Intigrity rule is about the complex business processes which cannot be implemented by the above 2 rules.

103. What are the Various Master and Detail Relation ships.

The various Master and Detail Relationship are

a) NonIsolated :: The Master cannot be deleted when a child is exisiting

b) Isolated :: The Master can be deleted when the child is exisiting

c) Cascading :: The child gets deleted when the Master is deleted.

104. What are the Various Block Coordination Properties

The various Block Coordination Properties are

a) Immediate

Default Setting. The Detail records are shown when the Master Record are shown.

b) Deferred with Auto Query

Oracle Forms defer fetching the detail records until the operator navigates to the detail block.

c) Deferred with No Auto Query

The operator must navigate to the detail block and explicitly execute a query

105. What are the Different Optimisation Techniques

The Various Optimization techniques are

a) Execute Plan :: we can see the plan of the query and change it accordingly based on the indexes

b) Optimizer_hint ::

set_item_property('DeptBlock',OPTIMIZER_HINT,'FIRST_ROWS');

Select /*+ First_Rows */ Deptno,Dname,Loc,Rowid from dept where (Deptno > 25)

 c) Optimize_Sql ::

By setting the Optimize_Sql = No, Oracle Forms assigns a single cursor for all SQL statements.This slow downs the processing because for evertime the SQL must be parsed whenver they are executed.

f45run module = my_firstform userid = scott/tiger optimize_sql = No

 d) Optimize_Tp ::

By setting the Optimize_Tp= No, Oracle Forms assigns seperate cursor only for each query SELECT statement. All other SQL statements reuse the cursor.

f45run module = my_firstform userid = scott/tiger optimize_Tp = No

106. How do u implement the If statement in the Select Statement

We can implement the if statement in the select statement by using the Decode statement.e.g select DECODE (EMP_CAT,'1','First','2','Second'Null);

Here the Null is the else statement where null is done .

107.How many types of Exceptions are there

There are 2 types of exceptions. They are

a) System Exceptions e.g. When no_data_found, When too_many_rows

b) User Defined Exceptions e.g. My_exception exception

When My_exception then

108. How do you use the same lov for 2 columns

We can use the same lov for 2 columns by passing the return values in global values and using the global values in the code

109. How many minimum groups are required for a matrix report

The minimum number of groups in matrix report are 4

110. What is the difference between static and dynamic lov

The static lov contains the predetermined values while the dynamic lov contains values that come at run time

111. What are snap shots and views

Snapshots are mirror or replicas of tables. Views are built using the columns from one or more tables. The Single Table View can be updated but the view with multi table cannot be updated

112. What are the OOPS concepts in Oracle.

Oracle does implement the OOPS concepts. The best example is the Property Classes. We can categorise the properties by setting the visual attributes and then attach the property classes for the objects. OOPS supports the concepts of objects and classes and we can consider the peroperty classes as classes and the items as objects

113. What is the difference between candidate key, unique key and primary key

Candidate keys are the columns in the table that could be the primary keys and the primary key is the key that has been selected to identify the rows. Unique key is also useful for identifying the distinct rows in the table.

114. What is concurrency

Cuncurrency is allowing simultaneous access of same data by different users. Locks useful for accesing the database are

a) Exclusive

The exclusive lock is useful for locking the row when an insert,update or delete is being done.This lock should not be applied when we do only select from the row.

b) Share lock

We can do the table as Share_Lock as many share_locks can be put on the same resource.

115. Previleges and Grants

Privileges are the right to execute a particulare type of SQL statements.

e.g :: Right to Connect, Right to create, Right to resource

Grants are given to the objects so that the object might be accessed accordingly.The grant has to be given by the owner of the object.

116. Table Space,Data Files,Parameter File, Control Files

Table Space ::

The table space is useful for storing the data in the database. When a database is created two table spaces are created.

a) System Table space ::

This data file stores all the tables related to the system and dba tables

b) User Table space

 This data file stores all the user related tables We should have seperate table spaces for storing the tables and indexes so that the access is fast.

Data Files

Every Oracle Data Base has one or more physical data files. They store the data for the database. Every data file is associated with only one database. Once the Data file is created the size cannot change. To increase the size of the database to store more data we have to add data file.

Parameter Files

Parameter file is needed to start an instance. A parameter file contains the list of instance configuration parameters e.g.::

db_block_buffers = 500

db_name = ORA7

db_domain = u.s.acme lang

Control Files

Control files record the physical structure of the data files and redo log files

They contain the Db name, name and location of dbs, data files ,redo log files and time stamp.

117. Physical Storage of the Data

The finest level of granularity of the data base are the data blocks.

Data Block

One Data Block correspond to specific number of physical database space

Extent

Extent is the number of specific number of contigious data blocks.

Segments

Set of Extents allocated for Extents. There are three types of Segments

Data Segment

Non Clustered Table has data segment data of every table is stored in cluster data segment

Index Segment

Each Index has index segment that stores data

Roll Back Segment

Temporarily store 'undo' information

118. What are the Pct Free and Pct Used

Pct Free is used to denote the percentage of the free space that is to be left when creating a table. Similarly Pct Used is used to denote the percentage of the used space that is to be used when creating a table

eg.:: Pctfree 20, Pctused 40

119. What is Row Chaining

The data of a row in a table may not be able to fit the same data block. Data for row is stored in a chain of data blocks .

120. What is a 2 Phase Commit

Two Phase commit is used in distributed data base systems. This is useful to maintain the integrity of the database so that all the users see the same values. It contains DML statements or Remote Procedural calls that reference a remote object. There are basically 2 phases in a 2 phase commit.

a) Prepare Phase :: Global coordinator asks participants to prepare

b) Commit Phase :: Commit all participants to coordinator to Prepared, Read only or abort Reply

121. What is the difference between deleting and truncating of tables

Deleting a table will not remove the rows from the table but entry is there in the database dictionary and it can be retrieved But truncating a table deletes it completely and it cannot be retrieved.

122. What are mutating tables

When a table is in state of transition it is said to be mutating. eg :: If a row has been deleted then the table is said to be mutating and no operations can be done on the table except select.

123. What are Codd Rules

Codd Rules describe the ideal nature of a RDBMS. No RDBMS satisfies all the 12 codd rules and Oracle Satisfies 11 of the 12 rules and is the only Rdbms to satisfy the maximum number of rules.

124. What is Normalisation

Normalisation is the process of organising the tables to remove the redundancy.There are mainly 5 Normalisation rules.

a) 1 Normal Form

 A table is said to be in 1st Normal Form when the attributes are atomic

b) 2 Normal Form

A table is said to be in 2nd Normal Form when all the candidate keys are dependant on the primary key

c) 3rd Normal Form

A table is said to be third Normal form when it is not dependant transitively

125. What is the Difference between a post query and a pre query

A post query will fire for every row that is fetched but the pre query will fire only once.

126. Deleting the Duplicate rows in the table

We can delete the duplicate rows in the table by using the Rowid

127. Can U disable database trigger? How?

 Yes. With respect to table

 ALTER TABLE TABLE

 [DISABLE all_trigger]

128. What is pseudo columns ? Name them?

A pseudocolumn behaves like a table column, but is not actually stored in the table. You can select from pseudocolumns, but you cannot insert, update, or delete their values. This section describes these pseudocolumns:

 * CURRVAL

 * NEXTVAL

 * LEVEL

 * ROWID

 * ROWNUM

129. How many columns can table have?

 The number of columns in a table can range from 1 to 254.

130. Is space acquired in blocks or extents ?

 In extents .

131. what is clustered index?

 In an indexed cluster, rows are stored together based on their cluster key values . Can not applied for HASH.

132. what are the data types supported By oracle (INTERNAL)?

 Varchar2, Number, Char, MLSLABEL.

133. What are attributes of cursor?

 %FOUND , %NOTFOUND , %ISOPEN,%ROWCOUNT

134. Can you use select in FROM clause of SQL select ?

 Yes.

135. Where do u decalare Global Variable in Package?

Ans: Package Specification

136. Can u create procedure or function without declaring it in Package specs?

Ans: YES, It is called private procedure.

137. what is private function and public functions in package?

Ans: If the function is declared in Package Specification then it is called Public Function.

 Public function can be called outside of Package. If the function is not declared in Package Specification then it is called Private Function. Private function can not be called outside of Package.

138. how do u call private functions in package?

Ans:
pack spcs p1...

func f1(); -- Public function

func f2(); -- Public function

end;

pack body p1...

func f1(){}; -- public

func f2(){}; -- public

func f3(){}; -- Private

func f4(){}; -- Private

end;

to call private call it in public function and public fun can be called from outside.

139. create a syquence, open a new session and execute first statement as select

 sequence. currval from dual; what will happene?

Ans:It will give an error. First time we have to fire next val & then only we can use currval.

140. I have t1 table in scott .. and same i have scott1 schema with same name... i grant

 select on scott1.t1 to scott, now i create a synonym for scott1.t1, what happenes when

 it is created. will it give runtime error or error while creating synonym?

Ans:
This will give an error, Same name can not be used

141. How many types of Triggers... (24)

142. tell me diff between .. 7.x, 8, 8i, 9i (undo tablespace)

Ans:
9i New Features--------------

1. Rollback Segment is being replaced by Undo Tablespace. (We can use either)

2. Flashback Query - It is used to retrack wrongly committed transaction

3. Online Table Creation (e.g. Create table as select * from will generate

 updated table)

4. List Partition - Table can be partitioned on a list

5. Buffer catche size is now dynamic (upto 4 different sizes can be specified for buffers)

143. what is view?

Ans:
View is a virtual table (or logical container of data), which does not physically store

data.

144. Why instade of trigger is created?

Ans:
To Insert/Update/Delete record from base table for any view operation

145. Are views updatable?

Ans:
Yes (Only if the view is based on one table, but it is NOT if more than one tables)

146. types of tuning?

Ans:
Application Tuning, Database Tuning, Memory Tuning, O/S Tuning

147. locking mode property of block(Immediate/Automatic/Delayed)

Automatic (default):- Identical to Immediate if the datasource is an

Oracle database. For other datasources, Form Builder determines the

available locking facilities and behaves as much like Immediate as

possible.

Immediate:- Form Builder locks the corresponding row as soon as the

end user presses a key to enter or edit the value in a text item.

Delayed:- Form Builder locks the row only while it posts the

transaction to the database, not while the end user is editing the

record. Form Builder prevents the commit action from processing if

values of the fields in the block have changed when the user causes a

commit action.
148. What is Function Over loading?
Function Overloading means we can use the same procedure name more than one time in a package but the no of parameters should be different or their data type should be different.
149. How can we return a value in procedures?
By using in, out parameters we can return the values in procedures
150. What are the features of OOPS used in PL/SQL ?
Ans:
Inheritance – Reusability

Abstract Datatype

Method Overloading

151. Can we use label for anonymous PL/SQL block?

 Ans:
Yes, use it in “<<label name>>” structure
152. What are the exceptions in PL/SQL Block?

Ans:
CURSOR_ALREADY_OPEN, DUP_VAL_ON_INDEX, INVALID_CURSOR, INVALID_NUMBER, NO_DATA_FOUND,

PROGRAM_ERROR, VALUE_ERROR, ZERO_DIVIDE

153. What are the types of Variable binding?
 Ans:
Two types of binding

Early Binding (at compile time)

Late Binding (Runtime)

154. What are the user defined data types ?

 Ans:
1.
Structured Types

Object Types

Collection Types

Varray

Nested Tables

REFS (To object Types)

155. How can we know that proc has passed a value ?

 Ans:
We can check it using “IN” or “OUT” or “INOUT” parameter.

156. What is the difference between REF Cursor & PL/SQL Table.

Ans:
REF Cursor is like Pointer whereas PL/SQL Table is like ARRAY.

REF Cursor can pass to a procedure/function as a parameter directly whereas in PL/SQL table one record has to be passed each time.

157. What Is a Collection?

A collection is an ordered group of elements, all of the same type (for example, the grades for a class of students). Each element has a unique subscript that determines its position in the collection. PL/SQL offers two collection types. Items of type TABLE are either index-by tables (Version 2 PL/SQL tables) or nested tables (which extend the functionality of index-by tables). Items of type VARRAY are varrays (short for variable-size arrays).

Collections work like the arrays found in most third-generation programming languages. However, collections can have only one dimension and must be indexed by integers. You can define collection types in a package, then use them programmatically in your applications. Also, you can pass collections as parameters. So, you can use them to move columns of data into and out of database tables or between client-side applications and stored subprograms. In addition, collections can store instances of an object type and (except for index-by tables) can be attributes of an object type.

Oracle Forms 4.5/ 5.0/ 6.0/ 6i and 9i FAQ

1. What is Oracle Forms and what is it used for?

Oracle Forms is a 4GL Rapid Application Development (RAD) environment. Forms Builder is used to create applications to enter, access, change, or delete data from Oracle (and other) databases. The Forms Runtime environment is required to execute compiled Forms modules. Forms can also be deployed across the Web using the Oracle Internet Application Server (iAS) Forms Services.
Oracle Forms is part of the Oracle Internet Developer Suite (iDS). It was previously called SQL*Forms.

2. Can an Forms FMX be moved from one operating system to another?

FMX files are operating system dependent. On the other hand, FMB's are not. So, you have to regenerate them when ever you change the operating system or the Forms version.

3. How does one iterate through items and records in a specified block?

One can use NEXT_FIELD to iterate (loop) through items in a specific block and NEXT_RECORD to iterate through records in a block. Code example:

OriPos := TO_NUMBER(:System.Trigger_Record);

First_Record;

LOOP

 -- do processing

 IF (:System.Last_Record = 'TRUE') THEN

 Go_Record(OriPos);

 EXIT;

 ELSE

 Next_Record;

 END IF;

END LOOP

4. Can on bypass the Oracle login screen?

The first thing that the user sees when using runform is the Oracle logon prompt asking them for their username, password, and database to connect to. You can bypass this screen or customise it by displaying your own logon screen. Eg:

ON-LOGIN

declare

 uname varchar2(10);

 pass varchar2(10);

begin

 uname := 'username';

 pass :='password';

 logon(uname, pass||'@connect_database');

end;

5. Can one Maximize/ Minimize a Window in Forms?

On MS-Windows, Forms run inside a Windows Multiple-Document Interface (MDI) window. You can use SET_WINDOW_PROPERTY on the window called FORMS_MDI_WINDOW to resize this MDI (or any other named) window. Examples:
 set_window_property(FORMS_MDI_WINDOW,WINDOW_STATE, MINIMIZE);

 set_window_property(FORMS_MDI_WINDOW, POSITION, 7, 15);

 set_window_property('my_window_name', WINDOW_STATE, MAXIMIZE);

6. How does one suppress or customize error messages in Forms?

One can either set the message level using the system variable SYSTEM.MESSAGE_LEVEL or trap the errors using the ON-ERROR or ON-MESSAGE triggers.
7. Can one issue DDL statements from Forms?

DDL (Data Definition Language) commands like CREATE, DROP and ALTER are not directly supported from Forms because your Forms are not suppose to manipulate the database structure.
A statement like CREATE TABLE X (A DATE); will result in error:

Encountered the symbol "CREATE" which is a reserved word.
However, you can use the FORMS_DDL built-in to execute DDL statements. Eg:

FORMS_DDL('CREATE TABLE X (A DATE)');

FORMS_DDL can also be used to create dynamic SQL statements at runtime. The FORMS_SUCCESS built-in can be used to determine if the last executed built-in was successful.

8. Can one execute dynamic SQL from Forms?

Yes, use the FORMS_DDL built-in or call the DBMS_SQL database package from Forms. Eg: FORMS_DDL('INSERT INTO X VALUES (' || col_list || ')');

Just note that FORMS_DDL will force an implicit COMMIT and may de-synchronize the Oracle Forms COMMIT mechanism.

9. Forms won't allow me to use restricted built-in's. What should I do?

How to get around the "can't use a restricted built-in in built-in XXX" message:
1. Create a TIMER at the point where you want the navigation to occur.
Eg. create_timer('TIMER_X', 5, NO_REPEAT);

2. Code a WHEN-TIMER-EXPIRED trigger to handle the navigation

DECLARE

 tm_name VARCHAR2(20);

BEGIN

 tm_name := Get_Application_Property(TIMER_NAME);

 IF tm_name = 'TIMER_X' THEN

 Go_Item('ITEM_X');

 END IF;

END;
Dirty but effective (didn't Oracle promise to fix this feature?).

10. Can one change the mouse pointer in Forms?

The SET_APPLICATION_PROPERTY build-in in Oracle Forms allow one to change the mouse pointer. The following cursor styles are supported: DEFAULT, BUSY, HELP, INSERTION and CROSSHAIR.
Eg: SET_APPLICATION_PROPERTY(CURSOR_STYLE, BUSY);

11. Why doesn't my messages show on the screen?

Regardless of whether you call the MESSAGE() built-in with ACKNOWLEDGE, NO_ACKNOWLEDGE, or with no mode specification at all, your message may or may not be displayed. This is because messages are displayed asynchronously. To display messages immediately, use the SYNCHRONIZE build-in:
message('...'); synchronize;

This can also be used to execute a query while the user is looking at the results of a previous query.

12. What happened to SQL*Menu?

From Forms V4.5, SQL*Menu is fully integrated into Oracle Forms. Application menus can be added to your application by creating Menu Modules (*.MMB) and generate it to Menu Module Executables (*.MMX).

13. How does one create a custom toolbar?

Create a new block, let's name it "TOOLBAR" and a canvas named "C_TOOLBAR" (for ilustration purposes). Put some iconic buttons on your canvas. Use the following properties for these buttons:
 Enabled: True

 Navigable: False

 Mouse Navigate: False

Now set the "Canvas Type" in the canvas property palette to "Horizontal Toolbar" and the "Form Horizontal Toolbar Canvas" in the module property palette to your canvas name (C_TOOLBAR in our case).

14. How does one compile MS Help files?

The Microsoft Help Compiler does not ship with Designer/2000 or Developer/2000, but you can download it from here:

Help Compiler - FTP Sites

Note: Designer/2000 includes a Help Generator that can generate source files for the Help Compiler.

15. How can I read/write OS Files from Forms?

OS files can be read/written from Forms using the TEXT_IO package in Forms. The TEXT_IO package has a datatype FILE_HANDLE. It also has procedures FCLOSE, GET_LINE, NEW_LINE, PUT, PUT_LINE & PUTF and a function FOPEN. Example:
 DECLARE

 file1 TEXT_IO.FILE_TYPE;

 file2 TEXT_IO.FILE_TYPE;

 str VARCHAR2(80);

 BEGIN=
 file1 := TEXT_IO.FOPEN('input.txt','r');

 file2 := TEXT_IO.FOPEN('output.txt', 'w');

 TEXT_IO.GET_LINE(file1, str);

 TEXT_IO.PUT_LINE(file2, str);

 TEXT_IO.FCLOSE(file1);

 TEXT_IO.FCLOSE(file2);

 END;

16. How can I generate all my forms in a batch?

Look at this DOS Batch file example:

@echo off

@echo. +--

@echo. | FMXGNALL.BAT

@echo. +--

@echo. |

@echo. | Create runtime FMXs from source FMBs

@echo. | Will convert ALL of the fmbs in the current direcotry

@echo. | Usage : FMXALL.BAT username/password@connect string

@echo. |

@echo. +--

@echo.

@echo. Username/Password@connect_string = %1

@echo.

IF %1 == "" GOTO END

@echo Removing old FMX files

del *.fmx

@echo Creating the new FMX files

rem Change f45gen32 to f45gen if in 16 bit environment.

FOR %%F in (*.fmb) DO start /w f45gen32 userid=%1 batch=y

module=%%F

@echo.

@echo Done!!! Remember to move the FMX files into your runtime

directory.

@echo.

:END

17. How does one get a form to run on Unix?

You need to design your form on your workstation. FTP or copy the Forms's FMB file to the Unix box. If you generate for a terminal environment (character based),
the syntax is:
 f45gen USERID=userid/passwd@db_name
MODULE_TYPE=FORM MODULE=module_name

If you want to generate a Library file, replace FORM with LIBRARY. Use f45genm to generate your form in a Motif environment. Use the "f45run" command to run your form.

Why do terminal users hate Forms?

Most Unix, MVS and VMS users do not like Forms 4.5/ 5.0/ 6.0 for a couple of reasons:
· You need to design on a PC and frequently get compatibility problems (font scaling, etc);

· Forms 4.5 is no improvement for Forms 3.0 terminal users at all, rather it is a step backwards;

· Forms 4.5 uses too much memory and executables are about 400% larger than for its 3.0 counter part;

· The largest Oracle Forms customers still runs on Forms V3.0 and will rather throw out Oracle than to convert to Forms 4.5.

I think Oracle should bring SQL*Forms v3.0 back for terminal users. They could rename the product to Oracle Forms for Terminals, or something.

Oracle Forms and Reports Services FAQ

1. What is Forms and Reports Services?

Oracle Forms and Reports Services is a component of the Oracle Internet Application Server (9iAS) that enables programmers to deploy Oracle Forms and Oracle Reports across the Web. Forms and Reports services as previously known as WebForms and WebReports. Some people also refer to it as the Forms and Reports Server.

With Oracle's Forms and Reports Services one can web-enable existing Oracle Developer (Forms and Reports) applications without changing any application code.

WebForms consist of a Forms client (downloadable Java applet) and FormsServer (Java NCA Cartridge). WebForms can be centrally deployed and managed and provides a nice thin client implementation.

2. What Web Servers can be used with the Forms and Reports Services?

The Oracle HTTP Server (Apache Web server) is installed with the Forms and Reports Services. However, any web server that supports CGI (Common Gateway Interfaces) can be used.

3. How does one start and stop the Forms and Reports Services?

Please note that the Forms Services will be running directly after installing the product. Use the following command to start and stop the Forms Services:

 $ORACLE_HOME/6iserver/forms60_server start

 $ORACLE_HOME/6iserver/forms60_server stop

Test if the Forms server is running by navigating to the following URL: http://host_name:port/dev60html/runform.htm. Change host_name and port to the server where you HTTP server is running. the

4. How does one deploy a Form on the Web?

Follow these steps to deploy a Form on the Web:

1. Copy or FTP the Form's FMB file to the server where the Forms Services are running.

2. Re-compile the Form to a FMX

3. Etc...

Forms 4.5 Questions

1) which system variables can be set by users?

1) SYSTEM.MESSAGE_LEVEL

SYSTEM.DATE_THRESHOLD

SYSTEM.EFFECTIVE_DATE

SYSTEM.SUPPRESS_WORKING

2) Can you store objects in library?

2) Referencing allows you to create objects that inherit their functionality and appearance from other objects. Referencing an object is similar to copying an object, except that the resulting reference object maintains a link to its source object. A reference object automatically inherits any changes that have been made to the source object when you open or regenerate the module that contains the reference object.

3) Is forms 4.5 object oriented tool and why?

3) Yes, partially. 1) PROPERTY CLASS - inheritance property

 2) OVERLOADING : procedures and functions.

4) Can you issue DDL in forms?

4) Yes, but you have to use FORMS_DDL.

Any string expression up to 32K:

· a literal

· an expression or a variable representing the text of a block of dynamically created PL/SQL code

· a DML statement or

· a DDL statement

Restrictions:

The statement you pass to FORMS_DDL may not contain bind variable references in the string, but the values of bind variables can be concatenated into the string before passing the result to FORMS_DDL.

5) What is SECURE property?

5) Hides characters that the operator types into the text item. This setting is typically used for password protection.

6) What are the types of triggers and how the sequence of firing in text item

6) Triggers can be classified as Key Triggers, Mouse Triggers, Navigational Triggers.

Key Triggers: Key Triggers are fired as a result of Key action.
e.g :: Key-next-field, Key-up, Key-Down

Mouse Triggers: Mouse Triggers are fired as a result of the mouse navigation.
e.g. When-mouse-button-pressed, when-mouse-doubleclicked, etc

Navigational Triggers: These Triggers are fired as a result of Navigation.
E.g : Pre-text-item, Post-Text-item.
We also have event triggers like when –new-form-instance and when-new-block-instance.

We cannot call restricted procedures like go_to(‘my_block.first_item’) in the Navigational triggers But can use them in the Key-next-item.

The Difference between Key-next and Post-Text is an very important question. The key-next is fired as a result of the key action while the post text is fired as a result of the mouse movement. Key next will not fire unless there is a key event.

The sequence of firing in a text item are as follows ::

 a) pre - text

 b) when new item

 c) key-next

 d) when validate

 e) post text

7) Can you store pictures in database? How?

7) Yes, in long Raw datatype or BLOB datatype.

8) What are property classes ? Can property classes have trigger?

8) Property class inheritance is a powerful feature that allows you to quickly define objects that conform to your own interface and functionality standards. Property classes also allow you to make global changes to applications quickly. By simply changing the definition of a property class, you can change the definition of all objects that inherit properties from that class.

Yes . All type of triggers .

9) If you have property class attached to an item and you have same trigger written for the item * Which will fire first?

9) Item level trigger fires, If item level trigger fires, property level trigger won't fire. Triggers at the lowest level are always given the first preference. The item level trigger fires first and then the block and then the Form level trigger.

10) What are record groups? * Can record groups created at run-time?

10) A record group is an internal Oracle Forms data structure that has a column/row framework similar to a database table. However, unlike database tables, record groups are separate objects that belong to the form module in which they are defined. A record group can have an unlimited number of columns of type CHAR, LONG, NUMBER, or DATE provided that the total number of columns does not exceed 64K. Record group column names cannot exceed 30 characters. Programmatically, record groups can be used whenever the functionality offered by a two-dimensional array of multiple data types is desirable.

TYPES OF RECORD GROUP:

Query Record Group

A query record group is a record group that has an associated SELECT statement.

The columns in a query record group derive their default names, data types, and lengths from the database columns referenced in the SELECT statement. The records in a query record group are the rows retrieved by the query associated with that record group.

Non-query Record Group

A non-query record group is a group that does not have an associated query, but whose structure and values can be modified programmatically at runtime.

Static Record Group

A static record group is not associated with a query; rather, you define its

Structure and row values at design time, and they remain fixed at runtime.

11) What are ALERT?

11) An ALERT is a modal window that displays a message notifying operator of some application condition.

12) Can a button have icon and label at the same time?

12)
-NO

13) What is mouse navigate property of button?

13) When Mouse Navigate is True (the default), Oracle Forms performs standard navigation to move the focus to the item when the operator activates the item with the mouse. When Mouse Navigate is set to False, Oracle Forms does not perform navigation (and the resulting validation) to move to the item when an operator activates the item with the mouse.

14) What is FORMS_MDI_WINDOW?

14) Forms run inside the MDI application window. This property is useful for calling a form from another one.

15) What are timers? When, when-timer-expired does not fire?

15) The When-Timer-Expired trigger can not fire during trigger, navigation, or transaction processing.

16) Can object group have a block?

16) Yes, object group can have block as well as program units.

17) How many types of canvases are there?
17) There are 2 types of canvases called as Content and Stack Canvas. Content canvas is the default and the one that is used mostly for giving the base effect. It’s like a plate on which we add items and stacked canvas is used for giving 3 dimensional effects.

18) What are user-exits?

18) It invokes 3GL programs.

19) Can you pass values to-and-fro from foreign function? how?

19) Yes, You obtain a return value from a foreign function by assigning the return value to an Oracle Forms variable or item. Make sure that the Oracle Forms variable or item is the same data type as the return value from the foreign function.

After assigning an Oracle Forms variable or item value to a PL/SQL variable, pass the PL/SQL variable as a parameter value in the PL/SQL interface of the foreign function. The PL/SQL variable that is passed as a parameter must be a valid PL/SQL data type; it must also be the appropriate parameter type as defined in the PL/SQL interface.

20) What is IAPXTB structure?

20) The entries of Pro*C and user exits and the form which simulate the Pro*c or user_exit are stored in IAPXTB table in d/b.

21) Can you call WIN-SDK thruo' user exits?

21) YES.

22) Does, user exits support DLL on MS-WINDOWS?

22) YES.

23) What is path setting for DLL?

23) Make sure you include the name of the DLL in the FORMS45_USEREXIT variable of the ORACLE.INI file, or rename the DLL to F45XTB.DLL. If you rename the DLL to F45XTB.DLL, replace the existing F45XTB.DLL in the \ORAWIN\BIN directory with the new F45XTB.DLL.

24) How is mapping of name of DLL and function done?

24) The DLL can be created using the Visual C++ / Visual Basic Tools and then the DLL is put in the path that is defined the registry.

25) What is pre-compiler?

25) It is similar to C pre-compiler directives.

26) Can you connect to non - oracle data source ? How?

26) Yes.

27) What are key-mode and locking mode properties? level?

27) Key Mode: Specifies how oracle forms uniquely identifies rows in the database. This is property includes for application that will run against NON-ORACLE data sources. Key setting unique (default.)

updateable

n-updateable.

Locking mode:

Specifies when Oracle Forms should attempt to obtain database locks on rows that correspond to queried records in the form.

a) immediate b) delayed

28) What are savepoint mode and cursor mode properties ? level?

28) Specifies whether Oracle Forms should issue savepoints during a session. This property is included primarily for applications that will run against non-ORACLE data sources. For applications that will run against ORACLE, use the default setting.

Cursor mode - define cursor state across transaction

Open/close.

29) Can you replace default form processing? How?

30) What is transactional trigger property?

30) Identifies a block as transactional control block. i.e. non - database block that oracle forms should manage as transactional block.(NON-ORACLE datasource) default - FALSE.

31) What is OLE automation?

31) OLE automation allows an OLE server application to expose a set of commands and functions that can be invoked from an OLE container application. OLE automation provides a way for an OLE container application to use the features of an OLE server application to manipulate an OLE object from the OLE container environment. (FORMS_OLE)

34) What does invoke built-in do?

34) This procedure invokes a method.

Syntax:

PROCEDURE OLE2.INVOKE (object obj_type, method VARCHAR2, list list_type:= 0);

Parameters:

Object Is an OLE2 Automation Object.

Method Is a method (procedure) of the OLE2 object.

List Is the name of an argument list assigned to the OLE2.CREATE_ARGLIST function.

36) What is call form stack?

36) When successive forms are loaded via the CALL_FORM procedure, the resulting module hierarchy is known as the call form stack.

37) Can u port applications across the platforms? how?

37) Yes we can port applications across platforms. Consider the form developed in a windows system. The form would be generated in unix system by using f45gen my_form.fmb scott/tiger

GUI
1) What is a visual attribute?

1) Visual attributes are the font, color, and pattern properties that you set for form and menu objects that appear in your application's interface.

2) Diff. between VAT and Property Class? imp

2) Named visual attributes define only font, color, and pattern attributes; property classes can contain these and any other properties. You can change the appearance of objects at runtime by changing the named visual attribute programmatically; property class assignment cannot be changed programmatically.

When an object is inheriting from both a property class and a named visual attribute, the named visual attribute settings take precedence, and any visual attribute properties in the class are ignored.

3) Which trigger related to mouse?

3) When-Mouse-Click

 When-Mouse-DoubleClick

 When-Mouse-Down

 When-Mouse-Enter

 When-Mouse-Leave

 When-Mouse-Move

 When-Mouse-Up

4) What is Current record attribute property?

4) Specifies the named visual attribute used when an item is part of the current record. Current Record Attribute is frequently used at the block level to display the current row in a multi-record If you define an item-level Current Record Attribute, you can display a pre-determined item in a special color when it is part of the current record, but you cannot dynamically highlight the current item, as the input focus changes.

5) Can u change VAT at run time?

5) Yes. You can programmatically change an object's named visual attribute setting to change the font, color, and pattern of the object at runtime.

6) Can u set default font in forms?

6) Yes. Change windows registry(regedit). Set form45_font to the desired font.

7) Can u have OLE objects in forms?

7) Yes.

8) Can u have VBX and OCX controls in forms?

8) Yes.

9) What r the types of windows (Window style)?

9) Specifies whether the window is a Document window or a Dialog window.

10) What is OLE Activation style property?

10) Specifies the event that will activate the OLE containing item.

11) Can u change the mouse pointer? How?

11) Yes, Specifies the mouse cursor style. Use this property to dynamically change the shape of the cursor.

Reports 2.5

1) How many types of columns are there and what are they

1) Formula columns:

For doing mathematical calculations and returning one value

Summary Columns:

For doing summary calculations such as summations etc.

Place holder Columns:

These columns are useful for storing the value in a variable

2) Can u have more than one layout in report

2) It is possible to have more than one layout in a report by using the additional layout option in the layout editor.

3) Can u run the report with out a parameter form

3) Yes it is possible to run the report without parameter form by setting the PARAM value to Null

4) What is the lock option in reports layout

4) By using the lock option we cannot move the fields in the layout editor outside the frame. This is useful for maintaining the fields.

5) What is Flex

5) Flex is the property of moving the related fields together by setting the flex property on

6) What are the minimum number of groups required for a matrix report

6) The minimum of groups required for a matrix report are 4

7. I switched the page size to 11x8.5, but the printer still prints in portrait.

Even though you set the page size in the report properties, there is a another variable in the system parameters section under the data model in the object navigator called orientation. This sets the printer orientation. Oracle starts by setting it to "default" which means that no matter how you set the page size, the user's default printer setup will be used. You can also set it to either "Landscape" or "Portrait" to force the printer orientation no matter what the user has set as default. These sorts of picky, minor details are the ones which are invariably forgotten when you are designing your report and are the reason I created our two report templates, reptmp_p and reptmp_l (portrait and landscape). For anyone who wants a consistent look in their reports I strongly recommend building a similar pair to save yourself an ulcer, unless you actually like starting from scratch every time!?!
8. I moved this field into that repeating frame, but I'm still getting a "frequency below it's group" error.

Moving fields around does not change what enclosing object is considered it's parent group. Oracle carefully remembers what repeating frame a field was originally placed in and assigns that as it's parent. If you then reference a column further down the line of the query structure it will return that error. If you are not exactly sure which repeating frame a field belongs to, try dragging it out of all of them. Whichever frame will not allow it to escape is it's parent. To change a field's parent, first click on the lock button on the speed button bar. It should now look like an unlocked padlock. Now all of the fields on the layout can be repositioned regardless of their original parent items. When you are satisfied with the repositioning click the lock button again to lock the layout. Oracle will parse the layout and assumes that any item fully enclosed in a repeating frame is a child object of that frame. This can be confirmed again by trying to drag an object out of it's parent. (Cntrl - Z or edit..undo will put it back where it came from)

Sometimes, for unknown and mysterious reasons, this method does not work. The alternative in this case is to highlight the field (or fields), cut it (cntrl-x), and then paste it into the desired frame. The paste does not initially set it into the right frame, but if you drag and drop it there before clicking on any other objects, and then click on something else, Oracle will usually figure what your intent was and assign the object(s) as a child of that frame. This is my preferred method of changing a field's parent as it works much more consistently then the unlock/lock method. One note though, if you are reassigning a group of fields, make sure the frame you are going to move them into is large enough to accept the whole group at once before you do the cut/paste. If you do the paste and then try to grow the frame to fit, you will have to cut and paste again. Once you de-select an object that has just been pasted, Oracle will assign it as a child of whatever it is in at the time.

If this technique also fails, you are probably going to have to delete and then recreate the objects within the desired frame. If the object has triggers attached, save yourself some typing by creating the new object in the right frame, copying over the trigger code, and then deleting the old object

9. I must put a repeating frame around these fields. How do I do this easily?

Well congratulations, you have just discovered one of the main reasons why good planning goes a long way. Oracle looks at the layout as a sort of layered inheritance model such that anything created on top of and completely inside another object is by definition a child of that object. Creation order is there for critical to the layout process. This means that placing a repeating frame on top of a field but larger than that field fails the ownership criteria. At best, if the new frame is fully enclosed within the same higher level frame as the field then the two will be considered sibling children of the higher level frame.
From this point you have two options. First, you can place the new repeating frame in the correct place and then use the techniques shown above in the "I moved this field but am still getting a frequency error" to reassign the fields into the new frame. There is also a second choice (which can also be used as a solution to the above). Go ahead and draw the new frame around the fields you want to have placed in it. Now if you try to click on one of the fields you will not be able to as they are fully covered by the new frame. Now go to the "Arrange" menu. You will find the options Send to back, bring to front, move forwards, move backwards. These are used to alter an object position in the Reports layer ordering. You use the "send backwards" option to move the frame backwards until all of the fields have popped to the front and are now enclosed in it. Oracle reassigns the new repeating frame as each object's parent as they pop to the front.

Note that you can only move an object back and forth amongst it's siblings. You cannot set it back below it's parent, nor in front of it's children. This means that once an object has popped to the front and had a reassignment of parent, you cannot move it back using these tools.

10. Why does part of a row sometimes get shifted to the next page, but not all of it?

This is due to the way the scan works when Oracle is parsing the layout. If the tops of all the fields in a row are aligned and the fields are all of the same height and font, they should all stay together. I suspect, however, that Reports bases it's decision on the printed size rather than the field size you define to determine which objects are too large and must be shifted to the next page. This means that even if you set two fields top-aligned with the same height and font but one of them is bolded, the bolded field could get shifted to the next page due to it's bigger footprint. The solution is to put the whole row into a regular frame which is page protected.
11. What exactly does the "Print Condition" do?

The print condition type First, All, All but first, Last, All but last refer to the frequency with which you want to appear based upon the setting of the print condition object. A print condition object of Enclosing Object is whichever object encloses the current object (could be the parent or a frame within the parent), while Anchoring Object is the parent object (unless you have explicitly anchored the object in which case it is the object to which it is anchored). The key here is that this is about the pages on which the Print Condition Object appears, not the current object. Oracle views First as the first page on which any part of the Print Condition Object is printed, likewise Last is the last page on which any part of the Print Condition Object is printed. For objects inside a repeating frame, this condition is re-evaluated for each instance of the frame.
As an example, assume we have created a field inside a repeating frame with Print Condition Object set to 'anchoring object', and Print Condition Type set to 'All But First'. On every instance of that repeating frame which is printed entirely within a single page, our object will not print. However, if an instance of that frame spans more than one page then our object will print on the second and every subsequent page that this instance of the repeating frame spans.

For most objects you will not have to play with this print condition setting as the default setting is pretty good at determining what pages to print on, even though it only chooses between 'first' and 'last'. Only such things as heading objects you want reprinted on multiple pages are normally candidates for fooling around with this setting.
1. How do I create a truly dynamic 'where' condition which the user can input on the parameter form for my select statement?
While setting a simple parameter for use in defining the select statement, such as a date, bill_period_id etc. is simple, there are times when you may wish to allow a user to add any "where" statement they wish. However, if you create a varchar user variable and try to reference it as an SQL condition (e.g. Select * from account where :usercondition) you will get an error. The secret is that the variable must be initialized to a valid SQL condition before the Data Model will accept it. This is done in the "Initial Value" spot on the variable's properties form. The usual default is "1 = 1" which simply means all rows meeting whatever other conditions are included in the select statement will pass this condition if the user does not change it in the parameter form.
12. How do I change a user parameter at runtime from a layout object trigger?

Quite simply, you can't. Once the Before Report trigger has fired, Reports locks down the user parameters until the report is finished. Oh, I know you can put a statement into a layout trigger at design time and the compiler will accept it, but the moment you run the report you will get a nasty error and the report will die. Why they couldn't catch those problems at compile time I have no idea, except that it probably uses the same PL/SQL compiler as Forms which uses that same syntax for the perfectly acceptable function of changing field values.
That being said, there is valid technique to mimic having a user variable which can be changed over the course of the report execution. What you have to do is create a PL/SQL package that contains a variable as well as the functions to read and write to that variable. Since variables inside a package are both local to that package and persistent over the duration of the run, you use this to save and change your variable value. I know that this seems like overkill, but it is the most efficient way of handling an issue that is very rarely encountered. As you can probably guess, this technique is a last resort to finding an SQL work around if one exists.

13. How do I set the initial values of parameters for the parameter form at runtime?

This is what the Before Form trigger is primarily used for. Even if you have used a select statement to create a lookup list for the parameter, this statement is fully parsed before the parameter form is opened. Simply setting the parameter to a given value in the Before Form trigger will select that option as the default value displayed to the user. For example, assume you have a parameter called p_input_date which is intended to hold an invoice date. The following example will select the most recent invoice date as the default, and note that it properly handles exceptions to ensure that the report does not arbitrarily die if this default setting fails. Note also that like all report triggers, it must return a true or false value.
function BeforePForm return boolean is

begin

select max(bill_period_end_date + 1)

 into :p_input_date

 from billing_period

 where bill_period_end_date <= (select trunc(sysdate) from dual);

 return (TRUE);

exception

 when others then

 :p_input_date := null;

 return true;

end;

14. Why can't I highlight a bunch of fields and change all their format masks or print conditions at once?

You can. If you highlight a bunch of objects and then right click and select "properties..", Oracle gives you a stacked set of the individual properties forms for each of the selected objects. While this may be useful for some things, it requires changing values individually for each object. However, instead you can select the group of fields and then select "Common properties" from the "Tools" menu which will allow you to set the format mask , print conditions etc. for the whole set of objects at once.
15. How do I change the printed value of a field at runtime?

Triggers are intended to simply provide a true or false return value to determine whether an object should be printed. It is generally not allowed to change any values held in the cursor, make changes to the database, or change the value of it's objects value. That being said, there is a highly unpublicized method of doing just that using the SRW.Set_Field_Char procedure. The syntax is SRW.Set_Field_char(0,) and the output of the object that the current trigger is attached to will be replaced by . There are also SRW.set_fileld_num, and SRW.set_field_date for numeric or date fields.
While these options do work, they should only be used if a suitable NVL or DECODE statement in the original query is not possible as they are much, much slower to run. Also, note that this change of value only applies to the formatted output. It does not change the value held in the cursor and so can not be used for evaluating summary totals.

Record group types There are three types of record groups: query record groups, non-query record groups, and static record groups.

Query record group
A query record group is a record group that has an associated SELECT statement. The columns in a query record group derive their default names, data types, and lengths from the database columns referenced in the SELECT statement. The records in a query record group are the rows retrieved by the query associated with that record group. Query record groups can be created and modified at design time or at runtime.

Non-query record group
A non-query record group is a group that does not have an associated query, but whose structure and values can be modified programmatically at runtime. Non-query record groups can be created and modified only at runtime.

Static record group A static record group is not associated with a query; instead, you define its structure and row values at design time, and they remain fixed at runtime. Static record groups can be created and modified only at design time.

You do not specify the record group type explicitly. The type is implied by when the record group is created (at design time or at runtime) and by how the group is defined.

Table Type nodes Table types appear within the Types node in the Object Navigator. A table type node represents a type created by the SQL statement, CREATE TYPE AS TABLE. The table type is displayed in the Object Navigator as:

table-type-name (TABLE OF table-subtype-name)

The table type node is not expandable if the subtype is a built-in type. If the subtype is an object type or REF object, the attributes of the object appear as subnodes.

The following SQL statements create the object type emp_typ and the table type emp_tbl.

CREATE TYPE emp_typ AS OBJECT

 (ename VARCHAR2(30), esalary NUMBER(5,2),

 MEMBER PROCEDURE raise(amount NUMBER),

 MEMBER FUNCTION get_salary RETURN NUMBER,

 MAP MEMBER FUNCTION compare RETURN NUMBER);

CREATE TYPE emp_tbl AS TABLE OF emp_typ;

Oracle8 is an object-relational database management system, which means you can define additional kinds of data-specifying both the data and the ways of operating on it-and use these types within the relational model.

There are two categories of user-defined datatypes: object types and collection types. User-defined datatypes use the built-in datatypes (such as CHAR, VARCHAR2, and NUMBER) and other user-defined datatypes as the building blocks for datatypes that model the structure and behavior of data in applications.

An object type serves as a template for objects. An object type specifies the elements (or attributes) that make up a structured data unit like a purchase order. Some attributes, such as the list of line items, may be other structured data units. An object type also specifies the operations (or methods) you can perform on the data unit, such as determining the total value of a purchase order.

Collection types describe data units that are made up of an indefinite number of elements, all of the same datatype. The collection types are varying array types and table types.

A varying array type specifies a data unit called VARRAY, which is an ordered set of data elements all of the same datatype. The number of elements in a VARRAY (or its size) is variable. However, you must specify a maximum size when you declare the varying array type.

A table type specifies a data unit called a nested table, which is an unordered set of data elements all of the same datatype. A nested table has a single column, and the type of that column is a built-in type or an object type.

Matrix reports A matrix (crosstab) report contains one row of labels, one column of labels, and information in a grid format that is related to the row and column labels. A distinguishing feature of matrix reports is that the number of columns is not known until the data is fetched from the database.

To create a matrix report, you need at least four groups: one group must be a cross-product group, two of the groups must be within the cross-product group to furnish the "labels," and at least one group must provide the information to fill the cells. The groups can belong to a single query or to multiple queries.

What are the Delimiters we are using in the SQL* Loader?

Delimiters are used to separate the column values in control file. In SQL * Loader we commonly using delimiters is ‘camas’.

